Skip to main content
Log in

Analytical Account for Off-Axis Effects in X-Ray Radiation of Harmonics of Free-Electron Lasers

  • Published:
Russian Physics Journal Aims and scope

Analytical description of generation of undulator radiation (UR) harmonics is given with account for the effects of finite electron beam size, emittance, off-axis beam deviation, and electron energy spread as well as of constant magnetic components and field harmonics. Exact analytical expressions obtained for the generalized Bessel and Airy functions describe the spectrum line profiles and the UR intensities in a two-frequency undulator with account for the above-enumerated factors. The obtained analytical formulas can be used to distinguish contributions of each field component and undulator and beam parameters to harmonic radiation of free-electron lasers (FELs). The effect of the field on harmonic radiation is analyzed with account for the finite beam size and its off-axis deviation. A phenomenological model is employed for FEL modeling; with its help, generation of the harmonics, including even ones, is studied in the Linac Coherent Light Sourсe (LCLS) and Low Energy Undulator Test Line (LEUTL) experiments. It is demonstrated analytically that in the LCLS experiment, the strong second FEL harmonic in the x-ray FEL at the wavelengths λ = 0.75 nm is due to the off-axis deviation of electron trajectories by 15 μm on a 1.6 m gain length, which is comparable to the beam size; the strong second FEL harmonic in the LEUTL experiment at the wavelength λ = 192 nm can be attributed to the large cross section of the electron beam itself. The results of modeling are in complete agreement with measurements. The developed formalism allows the projected and built FELs and their radiation to be analyzed; it helps losses to be minimized and magnetic fields to be corrected; it also shows physical background and reasons for each harmonic radiated power in the FEL under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. L. Ginzburg, Iz. Akad. Nauk SSSR, Ser. Fizich., 11, 1651 (1947).

  2. H. Motz, W. Thon, and R. N. J. Whitehurst, Appl. Phys., 24, 826 (1953).

    Article  Google Scholar 

  3. B. W. J. McNeil and N. R. Thompson, Nat. Photonics, 4, 814 (2010).

    Article  ADS  Google Scholar 

  4. C. Pellegrini, A. Marinelli, and S. Reiche, Rev. Mod. Phys., 88, 015006 (2016).

    Article  ADS  Google Scholar 

  5. P. Schmüser, M. Dohlus, J. Rossbach, and C. Behrens, Free-Electron Lasers in the Ultraviolet and X-Ray Regime, Springer Tracts in Modern Physics, 258, Springer International Publishing, Cham (2014).

    Google Scholar 

  6. Z. Huang and K. J. Kim, Phys. Rev. ST-AB, 10, 034801 (2007).

    ADS  Google Scholar 

  7. G. Margaritondo and P. R. Ribic, J. Synchrotron Rad., 18, 101 (2011).

    Article  Google Scholar 

  8. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, The Physics of Free-electron lasers, Springer Verlag, Berlin; Heidelberg (2000).

    Google Scholar 

  9. R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Commun., 50, 373 (1984).

    Article  ADS  Google Scholar 

  10. G. Margaritondo, Riv. del Nuovo Cim., 40, No. 9, 411 (2017).

    ADS  Google Scholar 

  11. V. G. Bagrov, G. S. Bisnovatyi-Kogan, V. A. Bordovitsyn, et al., Theory of Radiation of Relativistic Particles [in Russian], Fizmatlit, Moscow (2002).

    Google Scholar 

  12. I. M. Ternov, V. V. Mikhailin, and V. R. Halilov, Synchrotron Radiation and Its Applications [in Russian], Moscow State University Publishing House, Moscow (1980).

    Google Scholar 

  13. G. Margaritondo, Synchrotron Radiation, S. Mobilio, F. Boscherini, and C. Meneghini, eds., Springer, Berlin; Heidelberg (2015).

  14. K. Lee, J. Mun, S. Hee Park, et al., Nucl. Instrum. Methods Phys. Res. A, 776, 27 (2015).

    Article  ADS  Google Scholar 

  15. K. Zhukovsky and A. Kalitenko, J. Synchrotron Rad., 26, 605 (2019).

    Article  Google Scholar 

  16. K. Zhukovsky, J. Opt., 20, No. 9, 095003 (2018).

    Article  ADS  Google Scholar 

  17. K. Zhukovsky, Results Phys., 13, 102248 (2019).

    Article  Google Scholar 

  18. K. V. Zhukovsky, J. Synchrotron Rad., 26, 1481 (2019).

    Article  MathSciNet  Google Scholar 

  19. K. V. Zhukovsky, Russ. Phys. J., 62, No. 6, 1043 (2019).

    Article  Google Scholar 

  20. V. I. Alexeev and E. G. Bessonov, Nucl. Instrum. Methods A, 308, 140 (1991).

    Article  ADS  Google Scholar 

  21. P. Emma, R. Akre, J. Arthur, et al., Nat. Photonics, 4, 641 (2010).

    Article  ADS  Google Scholar 

  22. D. Ratner, A. Brachmann, F. J. Decker, et al., Phys. Rev. ST-AB, 14, 060701 (2011).

    ADS  Google Scholar 

  23. S. V. Milton, E. Gluskin, N. D. Arnold, et al., Science, 292, 2037 (2001).

    Article  ADS  Google Scholar 

  24. J. R. Henderson, L. T. Campbell, H. P. Freund, and W. J. McNeil, New J. Phys., 18, 062003 (2016).

    Article  ADS  Google Scholar 

  25. H. P. Freund, P. J. M. van der Slot, D. L. A. Grimminck, et al., New J. Phys., 19, 023020 (2017).

    Article  ADS  Google Scholar 

  26. H. P. Freund and P. J. M. van der Slot, New J. Phys., 20, 073017 (2018).

    Article  ADS  Google Scholar 

  27. H.-S. Kang, C.-K. Min, H. Neo, et al., Nat. Photonics, 11, 708 (2017).

    Article  ADS  Google Scholar 

  28. K. Zhukovsky and A. Kalitenko, J. Synchrotron Rad., 26,159 (2019).

    Article  Google Scholar 

  29. K. V. Zhukovsky and A. M. Kalitenko, Russ. Phys. J., 62, No. 2, 354 (2019).

    Article  Google Scholar 

  30. K. Zhukovsky, J. Electromagn. Waves Appl., 28, No. 15, 1869 (2014).

    Article  Google Scholar 

  31. K. V. Zhukovsky, J. Electromagn. Waves Appl., 29, No. 1, 132 (2015).

    Article  Google Scholar 

  32. G. Dattoli, V. V. Mikhailin, and K. Zhukovsky, J. Appl. Phys., 104, 124507 (2008).

    Article  ADS  Google Scholar 

  33. G. Dattoli, V. V. Mikhailin, and K. V. Zhukovsky, Mosc. Univ. Phys. Bull., 64, No. 5, 507 (2009).

    Article  ADS  Google Scholar 

  34. K. V. Zhukovsky, Mosc. Univ. Phys. Bull., 73, No. 4, 364 (2018).

    Article  ADS  Google Scholar 

  35. K. Zhukovsky, Opt. Commun., 418, 57 (2018).

    Article  ADS  Google Scholar 

  36. K. Zhukovsky, J. Appl. Phys., 122, 233103 (2017).

    Article  ADS  Google Scholar 

  37. K. Zhukovsky, J. Phys. D, 50, 505601 (2017).

    Article  Google Scholar 

  38. K. Zhukovsky and I. Potapov, Laser Part. Beams, 35, 326 (2017).

    Article  ADS  Google Scholar 

  39. K. V. Zhukovsky, J. Math. Anal. Appl., 446, 628 (2017).

    Article  MathSciNet  Google Scholar 

  40. D. F. Alferov, Yu. A. Bashmakov, and E. G. Bessonov, Zh. Tekh. Fiz., 43, No. 10, 2126 (1973).

    Google Scholar 

  41. D. F. Alferov, Yu. A. Bashmakov, and P. A. Cherenkov, Usp. Fiz. Nauk, 157, No. 3, 389 (1989).

    Article  Google Scholar 

  42. V. G. Bagrov, I. M. Ternov, and B. V. Kholomai, Radiation of Relativistic Electrons in the Longitudinal Periodic Electric Field of a Crystal [in Russian], Publishing Hous of the Tomsk Affiliate of the SB RAS, Tomsk (1987).

    Google Scholar 

  43. N. A. Vinokurov, and E. B. Levichev, Usp. Fiz. Nauk, 185, 917 (2015).

    Article  Google Scholar 

  44. E. G. Bessonov, To theory of sources of undulator radiation [in Russian], Preprint No. 18, Lebedev Physical Institute, Moscow (1982).

  45. B. Prakash, V. Huse, M. Gehlot, et al., Optik, 127, 1639 (2016).

    Article  ADS  Google Scholar 

  46. K. V. Zhukovsky, Mosc. Univ. Phys. Bull., 74, No. 5, 480 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 21–28, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K.V. Analytical Account for Off-Axis Effects in X-Ray Radiation of Harmonics of Free-Electron Lasers. Russ Phys J 64, 23–32 (2021). https://doi.org/10.1007/s11182-021-02296-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02296-4

Keywords

Navigation