Skip to main content
Log in

Limiting Accuracy of Solving the Two-Dimensional Parabolic Equation by the Split-Step Fourier Transform Method

  • Published:
Russian Physics Journal Aims and scope

Numerical solution of the wave parabolic equation on a rectangular grid is analyzed when the discrete split-step Fourier transform (FT) method is used to calculate the field values in an inhomogeneous medium on the next step in the range. The goal is to find out the limiting possibilities of the FT method itself, so studies have been carried out for radio wave propagation in free space only. Two related problems have been solved. First, the minimum value of the root-mean-square error (RMSE) of the calculated field has been estimated. Second, the same has been done for the transmission coefficients of the Fourier series harmonics and of the coefficients of the artificial absorbing layer (AL), which are dependent on the parameters of the computational scheme. It is shown that the dependence of the RMSE value on the distance to the source always has a maximum. The forms of the optimal ALs differ from those used conventionally primarily by the presence of a significant imaginary component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kasampalis, P. I. Lazaridis, Z. D. Zaharis, et al., in: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Ghent (2015), pp. 457–462.

  2. M. Zheng, J. Systems Eng. Electron., 19, No. 4, 683–687 (2008).

    Article  Google Scholar 

  3. M. Hata, IEEE Trans. Veh. Technol, 29, No. 3, 317–325 (1980).

    Article  Google Scholar 

  4. P. Zhang, L. Bai, Zh. Wu, and L. Guo, IEEE Trans. Antennas Propag., 58, No. 3, 31–44 (2016).

  5. M. A. Leontovich and V. A. Fok, Zh. Eksp. Teor. Fiz., 16, No. 7, 557–573 (1946).

    Google Scholar 

  6. V. A. Fok, Problems of Diffraction and Propagation of Electromagnetic Waves [in Russian], Sovetskoe Radio, Moscow (1970).

    Google Scholar 

  7. R. H. Hardin and F. D. Tappert, Siam Rev., 15, No. 2, 423 (1973).

    Google Scholar 

  8. J. F. Claerbout, Fundamentals of Geophysical Data Processing with Application to Petroleum Prospect, McGraw-Hill Press, New York (1976).

    Google Scholar 

  9. Yu. P. Akulinichev, F. N. Zakharov, V. A. Permyakov, and M. S. Mikhailov, Izv. Vyssh. Uchebn. Zaved. Fiz., 59, No. 12/3, 169–177 (2016).

    Google Scholar 

  10. Y. Hurtaud and J. Claverie, URSI Radio Sci. Bull., 88, No. 2, 10–16 (2015).

    Google Scholar 

  11. M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE, London (2000).

    Book  Google Scholar 

  12. J. Claerbout, Geophys. J. Int., 86, No. 1, 217–219 (1986).

    Article  ADS  Google Scholar 

  13. M. Feit and J. Fleck, Appl. Opt., 17, No. 24, 3990–3998 (1978).

    Article  ADS  Google Scholar 

  14. M. Lytaevand A. Vladyko, in: Proc. of Meeting on Advances in Wireless and Optical Comunications (RTUWO), Riga (2018); DOI: https://doi.org/10.1109/RTUWO.2018.8587886.

  15. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radio Physics. Part 2. Random Fields [in Russian], Nauka, Moscow (1978).

  16. A. A. Samarskii, Introduction to Numerical Methods [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  17. J. R. Kuttler and G. D. Dockery, Radio Sci., 26, No. 2, 381–393 (1991).

    Article  ADS  Google Scholar 

  18. S. Marcus and D. Degani, in: Proc. Antennas and Propag. Soc. Int. Symp. Dig., Seattle (1994), pp. 2088–2091.

  19. A. Iqbal and V. Jeoti, in: Proc. Nat. Postgraduate Conf. (NPC), Kuala-Lumpur (2011), pp. 1–6.

  20. G. Apaydin and L. Sevgi, IEEE Trans. Antennas Propag., 58, No. 4, 1302–1314 (2010).

    Article  ADS  Google Scholar 

  21. G. D. Dockery and G. C. Konstanzer, Johns Hopkins APL Tech. Dig., 8, No. No. 4, 404–412 (1987).

    ADS  Google Scholar 

  22. G. D. Dockery and J. R. Kuttler, IEEE Trans. Antennas Propag., 44, No. 12, 1592–1599 (1996).

    Article  ADS  Google Scholar 

  23. J. R. Kuttler and R. Janaswamy, Radio Sci., 37, No. 2, 5–11 (2002).

    Article  Google Scholar 

  24. Yu. P. Akulinichev and A. V. Mogilnikov, in: Proc. Int. Siberian Conf. on Control and Communication (SIBCON), Tomsk (2019); DOI: https://doi.org/10.1109/SIBCON.2019.8729630.

  25. Yu. P. Akulinichev, P. V. Abramov, and I. N. Vaulin, Proc. TUSUR Univ., No. 2 (16), 139–145 (2007).

  26. V. I. Tikhonov, Static Radio Engineering [in Russian], Radio i Svyaz’, Moscow (1982).

    Google Scholar 

  27. Yu. P. Akulinichev and A. V. Mogilnikov, Proc. TUSUR Univ., 21, No. 4-1, 16–21 (2018).

    Article  Google Scholar 

  28. R. P. Feynman and A. R. Hibs, Quantum Mechanics and Path Integrals [Russian translation], Mir, Moscow (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mogilnikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 43–49, January, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogilnikov, A.V., Akulinichev, Y.P. Limiting Accuracy of Solving the Two-Dimensional Parabolic Equation by the Split-Step Fourier Transform Method. Russ Phys J 64, 50–57 (2021). https://doi.org/10.1007/s11182-021-02299-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02299-1

Keywords

Navigation