Skip to main content
Log in

Design and performance analysis of low power LNA with variable gain current reuse technique

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a CMOS low power Variable Gain Low Noise Amplifier for 26–34 GHz in 45 nm process technology, which composes of cascaded complimentary common gate (CCG) stage and digital current steering amplifier. First stage is CCG stage, which helps in achieving the low power consumption and less area. Second stage is variable gain amplifier, uses current reuse technique as well as gm-boost technique and has constant dc current to make the input impedance stable. Source degeneration technique cancel out MOS parasitic capacitance help in achieving linearity. Simulated maximum peak gain is 13.139 dB at 30.57 GHz and lowest peak gain is 7.75 dB at 26 GHz i.e. approximately flat over the entire band. Lowest NF is 3.08 dB at 32.6 GHz. Process corner simulation has been done for all four corners (S–S, S–F, F–S, F–F) showing robustness of LNA. Input return loss has value less than − 9.58 dB while output return loss has less than − 2.6 dB showing good matching; power consumption is 16 mW for dc current of 16 mA at 1 V. MOS active chip area is 76.727 µm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. El-Nozahi, M., Sanchez-Sinencio, E., & Entesari, K. (2010). A millimeter-wave (23–32 GHz) wideband BiCMOS low-noise amplifier. IEEE Journal of Solid-State Circuits, 45(2), 289–299

    Article  Google Scholar 

  2. Heidari, T., & Nabavi, A. (2020). Design and analysis of a wideband compact LNA-mixer in millimeter wave frequency. Analog Integrated Circuits and Signal Processing, 1–13.

  3. Gebali, F., & Atef, I. (2014). Efficient scalable serial multiplier over GF (2m) based on trinomial. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(10), 2322–2326

    Article  Google Scholar 

  4. Rivas-Torres, W., & Roth, Z. S. (2013). Determination and study of MOSFET technology current. Canadian Journal on Electrical and Electronics Engineering, 4(2), 75–82

    Google Scholar 

  5. Chang, Y.-T., & Hsin-Chia, Lu. (2019). A V-band low-power digital variable-gain low-noise amplifier using current-reused technique with stable matching and maintained OP1dB. IEEE Transactions on Microwave Theory and Techniques, 67(11), 4404–4417

    Article  Google Scholar 

  6. Qin, P., & Xue, Q. (2017). Design of wideband LNA employing cascaded complimentary common gate and common source stages. IEEE Microwave and Wireless Components Letters, 27(6), 587–589

    Article  Google Scholar 

  7. Shameli, A., & Heydari, P. (2006). A novel power optimization technique for ultra-low power RFICs. In Proceedings of the 2006 international symposium on Low power electronics and design (pp. 274–279). ACM.

  8. Zhang, F., & Kinget, P. R. (2006). Low-power programmable gain CMOS distributed LNA. IEEE Journal of Solid-State Circuits, 41(6), 1333–1343

    Article  Google Scholar 

  9. Heydari, P. (2007). Design and analysis of a performance-optimized CMOS UWB distributed LNA. IEEE Journal of Solid-State Circuits, 42(9), 1892–1905

    Article  Google Scholar 

  10. Kumar, M., & Deolia, V. K. (2019). A wideband design analysis of LNA utilizing complimentary common gate stage with mutually coupled common source stage. Analog Integrated Circuits and Signal Processing, 98(3), 575–585

    Article  Google Scholar 

  11. Lo, Y.-T., & Kiang, J.-F. (2011). Design of wideband LNAs using parallel-to series resonant matching network between common-gate and common source stages. IEEE Transactions on Microwave Theory and Techniques, 59(9), 2285–2294

    Article  Google Scholar 

  12. Jussila, J., & Sivonen, P. (2008). A 1.2-V highly linear balanced noise-cancelling LNA in 0.13 µm CMOS. IEEE Journal of Solid-State Circuits, 43(3), 579–587

    Article  Google Scholar 

  13. Fu, C.-T., Kuo, C.-N., & Taylor, S. (2010). Low-noise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching. IEEE Transactions on Microwave Theory and Techniques, 58(4), 795–806

    Article  Google Scholar 

  14. Borremans, J., Wambacq, P., Soens, C., Rolain, Y., & Kuijk, M. (2008). Low-area active-feedback low-noise amplifier design in scaled digital CMOS. IEEE Journal of Solid-State Circuits, 43(11), 2422–2433

    Article  Google Scholar 

  15. Perumana, B. G., Zhan, J. H. C., Taylor, S. S., Carlton, B. R., & Laskar, J. (2008). Resistive-feedback CMOS low-noise amplifiers for multiband applications. IEEE Transactions on Microwave theory and Techniques, 56(5), 1218–1225

    Article  Google Scholar 

  16. Chang, J., & Lin, Y. (2011). 0.99 mW 3–10 GHz common-gate CMOS UWB LNA using T-match input network and self-body-bias technique. Electronics Letters, 47(11), 658–659

    Article  Google Scholar 

  17. Parvizi, M., Allidina, K., & El-Gamal, M. N. (2016). An ultra-low-power wideband inductorless CMOS LNA with tunable active shunt-feedback. IEEE Transactions on Microwave Theory and Techniques, 64(6), 1843–1853

    Article  Google Scholar 

  18. Belmas, F., Hameau, F., & Fournier, J. M. (2012). A low power inductorless LNA with double gm enhancement in 130 nm CMOS. IEEE Journal of Solid-State Circuits, 47(5), 1094–1103

    Article  Google Scholar 

  19. Bruccoleri, F., Klumperink, E. A., & Nauta, B. (2004). Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE Journal of Solid-State Circuits, 39(2), 275–282

    Article  Google Scholar 

  20. Ankathi, S., Vignan, S., Athukuri, S., et al. (2017). A 5–7 GHz current reuse and gm-boosted common gate low noise amplifier with LC based ESD protection in 32 nm CMOS. Analog Integrated Circuits and Signal Processing, 90, 573–589

    Article  Google Scholar 

  21. Soleymani, F., Bastan, Y., Amiri, P., & Maghami, M. H. (2020). A 0.3–1.4 GHz inductorless CMOS variable gain LNA based on the inverter cell and self-forward-body-bias technique. AEU-International Journal of Electronics and Communications, 113, 152974

    Article  Google Scholar 

  22. Park, H., Jung, S., & Chung, H. J. (2020). An analog correlator based CMOS analog front end with digital gain control circuit for hearing aid devices. Analog Integrated Circuits and Signal Processing, 105(2), 157–165

    Article  Google Scholar 

  23. Zhang, F., & Kinget, P. (2006). Low-power programmable gain CMOS distributed LNA. IEEE Journal of Solid-State Circuits, 41(6), 1333–1343

    Article  Google Scholar 

  24. Yu, Y.-H., Chen, Y.-J., & Heo, D. (2007). A 0.6-V low power UWB CMOS LNA. IEEE Microwave and Wireless Components Letters, 17(3), 229–231

    Article  Google Scholar 

  25. Parvizi, M., Allidina, K., & El-Gamal, M. N. (2014). A sub-mW, ultra-low-voltage, wideband low-noise amplifier design technique. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(6), 1111–1122

    Article  Google Scholar 

  26. Razavi, B. (2016). Design of analog CMOS integrated circuits. Tata McGraw Hill.

    Google Scholar 

  27. Liu, J. Y. C., Chen, J. S., Hsia, C., Yin, P. Y., & Lu, C. W. (2014). A wideband inductorless single-to-differential LNA in 0.18 µm CMOS technology for digital TV receivers. IEEE Microwave and Wireless Components Letters, 24(7), 472–474

    Article  Google Scholar 

  28. Kim, J., & Silva-Martinez, J. (2012). Wideband inductorless balun-LNA employing feedback for low-power low-voltage applications. IEEE Transactions on Microwave Theory and Techniques, 60(9), 2833–2842

    Article  Google Scholar 

  29. Wang, H., Zhang, Li., & Zhiping, Yu. (2010). A wideband inductorless LNA with local feedback and noise cancelling for low-power low-voltage applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1993–2005

    Article  MathSciNet  Google Scholar 

  30. Liao, C.-F., & Liu, S.-I. (2007). A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers. IEEE Journal of Solid-State Circuits, 42(2), 329–339

    Article  Google Scholar 

  31. Chou, H. T., Chen, S. W., & Chiou, H. K. (2013). A low-power wideband dual-feedback LNA exploiting the gate-inductive bandwidth/gain-enhancement technique. In 2013 IEEE MTT-S international microwave symposium digest (MTT) (pp. 1–3). IEEE.

  32. Kim, J., Hoyos, S., & Silva-Martinez, J. (2010). Wideband common-gate CMOS LNA employing dual negative feedback with simultaneous noise, gain, and bandwidth optimization. IEEE Transactions on Microwave Theory and Techniques, 58(9), 2340–2351

    Article  Google Scholar 

  33. Guo, B., & Li, X. (2013). A 1.6–9.7 GHz CMOS LNA linearized by post distortion technique. IEEE Microwave and Wireless Components Letters, 23(11), 608–610

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj Kalra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalra, D., Goyal, V. & Srivastava, M. Design and performance analysis of low power LNA with variable gain current reuse technique. Analog Integr Circ Sig Process 108, 351–361 (2021). https://doi.org/10.1007/s10470-021-01855-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01855-6

Keywords

Navigation