Skip to main content
Log in

Contactless scribe-test monitor with photovoltaic power, VLC downlink and IR-UWB uplink

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A contactless scribe-line channel-leakage monitor with relaxed alignment requirement is described. It comprises photovoltaic converters for powering from indoor illumination, a visible light communication downlink for selecting one among multiple monitors, and an ultra-wideband impulse-radio uplink for transmitting the measured leakage data in the form of impulse repetition frequency. Readout is accomplished with an external loop antenna loosely aligned to the scribe-line transmitter antenna. The proposed monitor was implemented in 0.18-μm CMOS with a footprint 4960 μm \(\times \) 160 μm including the transmitter antenna. It deploys a novel leakage sensor of ring-oscillator topology. All circuit blocks, except for the transmitter, are power-supplied directly by photovoltaic converters without regulation, and consume 64 nW. Transmitter is powered by an integrated storage capacitor charged to 1.8 V by a photovoltaic-powered voltage booster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The negative converter bank displayed in Fig. 1(b) contains two additional units deployed as current sinks.

  2. Actually, a pole associated with the output node turns (5) into a bandpass transfer function, and thus suppresses high-frequency flicker also.

References

  1. Biswas, S., & Cory, B. (2012). An industrial study of system-level test. IEEE Design & Test of Computers, 29, 19–27. https://doi.org/10.1109/MDT.2011.2178387.

    Article  Google Scholar 

  2. Bhushan, M., & Ketchen, M. B. (2011). Microelectronic test structures for CMOS technology (p. 28). New York: Springer.

    Book  Google Scholar 

  3. Park, P., Chen, L., Yu, H.-K., & Yue, C. P. (2010). A fully integrated transmitter with embedded antenna for on-wafer wireless testing. IEEE Transactions on Microwave Theory and Techniques, 58, 1456–1462. https://doi.org/10.1109/TMTT.2010.2042855.

    Article  Google Scholar 

  4. Moore, B., Margala, M., & Backhouse, C. (2005). Design of wireless on-wafer submicron characterization system. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13, 169–180. https://doi.org/10.1109/TVLSI.2004.840780.

    Article  Google Scholar 

  5. Sellathamby, C. V., Reja, M. M., Fu, L., Bai, B., Reid, E., Slupsky, S. H., et al. (2005). Noncontact wafer probe using wireless probe cards. IEEE International Test Conference,. https://doi.org/10.1109/TEST.2005.1584004.

    Article  Google Scholar 

  6. Finocchiaro, A., Girlando, G., Motta, A., Pagani, A., & Palmisano, G. (2018). A fully contactless wafer-level testing for UHF RFID tag with on-chip antenna. International Conference on Design & Technology of Integrated Systems in Nanoscale Era, 2018, 1–6. https://doi.org/10.1109/DTIS.2018.8368554.

    Article  Google Scholar 

  7. Yoshida, Y., Nose, K., Nakagawa, Y., Noguchi, K., Morita, Y., Tago, M., et al. (2010). An inductive-coupling dc voltage transceiver for highly parallel wafer-level testing. IEEE Jorunals of Solid-State Circuits, 45, 2057–2064. https://doi.org/10.1109/JSSC.2010.2061653.

    Article  Google Scholar 

  8. Kim, G.-S., Takamiya, M., & Sakurai, T. (2009). A 25-mV-sensitivity 2-Gb/s optimum-logic-threshold capacitive coupling receiver for wireless wafer probing systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 56, 709–713. https://doi.org/10.1109/TCSII.2009.2027966.

    Article  Google Scholar 

  9. Scarselli, E. F., Perilli, L., & Canegallo, R. (2015). A 40 nm CMOS I/O pad design with embedded capacitive coupling receiver for non-contact wafer probe test. IEEE Transactions on Circuits and Systems-I: Regular Papers, 62, 1737–1745. https://doi.org/10.1109/TCSI.2015.2441964.

    Article  Google Scholar 

  10. Steinbrueck, G., Vickers, J. S., Babazadeh, M., Pelella, M., & Pakdaman, N. (2009). Non-contact, pad-less measurement technology and test structures for characterization of cross-wafer and in-die product variability. IEEE International Conference of Microelectronic Test Structures,. https://doi.org/10.1109/ICMTS.2009.4814617.

    Article  Google Scholar 

  11. Çilingiroğlu, U., Tar, B., & Özmen, Ç. (2014). On-chip photovoltaic energy conversion in bulk-CMOS for indoor applications. IEEE Transactions on Circuits and Systems-I: Regular Papers, 61, 2491–2504. https://doi.org/10.1109/TCSI.2014.2304652.

    Article  Google Scholar 

  12. Bhusan, M., Gattiker, A., Ketchen, M. B., & Das, K. K. (2006). Ring oscilators for CMOS process tuning and variability control. IEEE Transactions on Semiconductor Manufacturing, 19, 10–18. https://doi.org/10.1109/TSM.2005.863244.

    Article  Google Scholar 

  13. Fujimoto, S., Islam, A. K. M. M., Matsumoto, T., & Onodera, H. (2013). Inhomogenous ring oscillator for within-die variability and RTN characterization. IEEE Transactions on Semiconductor Manufacturing, 26, 296–305. https://doi.org/10.1109/TSM.2013.2265702.

    Article  Google Scholar 

  14. Deutsch, S., & Chakrabarty, K. (2014). Contactless pre-bond TSV test and diagnosis using ring oscillators and multiple voltage levels. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33, 774–785. https://doi.org/10.1109/TEST.2015.7342389.

    Article  Google Scholar 

  15. Sutaria, K. B., Velamala, J. B., Kim, C. H., Sato, T., & Cao, Y. (2014). Aging statistics based on trapping/detrapping compact modeling and silicon validation. IEEE Transactions on Device and Materials Reliability, 14, 607–615. https://doi.org/10.1109/TDMR.2014.2308140.

    Article  Google Scholar 

  16. Bhusan, M., Ketchen, M. B., Cai, M., & Kim, C. (2008). Ring oscillator technique for MOSFET CV characterization. IEEE Transactions on Semiconductor Manufacturing, 21, 180–185. https://doi.org/10.1109/TSM.2008.2000286.

    Article  Google Scholar 

  17. Das, B. P., & Onodera, H. (2014). On-chip measurement of rise/fall gate delay using reconfigurable ring oscillator. IEEE Transactions on Circuits and Systems-II: Express Briefs, 61, 183–187. https://doi.org/10.1109/TCSII.2013.2296118.

    Article  Google Scholar 

  18. Suzuki, S. (2005). System and method for measuring transistor leakage current with a ring oscillator with backbias controls. U.S. Patent 6 885 210, April 26

  19. Suzuki, S., & Burr, J. (2006). System and method for measuring transistor leakage current with a ring oscillator. U.S. Patent 7 038 483, May 2

  20. Persun, M., & Samaan, S.B. (2007). Measuring relative, within-die leakage current and/or providing a temperature variation profile using a leakage inverter and ring oscillator, U.S. Patent 7 193 427, March 20

  21. Mahfuzul Islam, A. K. M., Shiomi, J., Ishihara, T., & Onodera, H. (2015). Wide-supply-range all-digital leakage variation sensor for on-chip process and temperature monitoring. IEEE Journals on Solid-State Circuits, 50, 2475–2490. https://doi.org/10.1109/JSSC.2015.2461598.

    Article  Google Scholar 

  22. Nakagome, Y., Tanaka, H., Takeuchi, K., Kume, E., Watanabe, Y., Kaga, T., et al. (1991). An experimental 1.5-V 64-Mb DRAM. IEEE Journals of Solid-State Circuits, 26, 465–472. https://doi.org/10.1109/4.75040.

    Article  Google Scholar 

  23. Ghovanloo, M., & Najafi, K. (2004). Fully integrated wideband high-current rectifiers for inductively powered devices. IEEE Journals of Solid-State Circuits, 39, 1976–1984. https://doi.org/10.1109/JSSC.2004.835822.

    Article  Google Scholar 

  24. Tar, B., & Çilingiroğlu, U. (2014). Nanowatt-scale power management for on-chip photovoltaic energy harvesting beacons. IEEE Journals of Emerging and Selected Topics in Circuits and Systems, 4, 284–291. https://doi.org/10.1109/JETCAS.2014.2337192.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Scientific and Technological Research Council of Turkey under Grant 116E256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anıl Özdemirli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Özdemirli and A. A. Yıldız were with the Department of Electrical and Electronics Engineering, Yeditepe University. They are now with Mikroelektronik Ltd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemirli, A., Yıldız, A.A. & Çilingiroğlu, U. Contactless scribe-test monitor with photovoltaic power, VLC downlink and IR-UWB uplink. Analog Integr Circ Sig Process 108, 625–634 (2021). https://doi.org/10.1007/s10470-021-01844-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01844-9

Keywords

Navigation