Skip to main content
Log in

Sensitivity of rice to photooxidation associated with antioxidant enzyme activity and carbon assimilation

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In this study, rice cultivar 8272 (yellowing leaves) was compared with cultivar 9311 (normal leaf color) to clarify the mechanism underlying the chlorosis. The 8272 leaf color was sensitive to intense sunlight accompanied by high temperatures, which induced the yellowing of leaves, whereas the 9311 leaf color was normal under the same growing conditions. A shading experiment in the field and an artificial climate chamber test revealed that the chlorosis of 8272 leaves was due to high-intensity light, rather than high temperatures. Analyses of chlorophyll fluorescence parameters indicated that the photosystem II (PSII) reaction center activity of 8272N (grown under natural high light conditions) was significantly lower than that of 8272S (under shade), with the electron transfer significantly inhibited. The H2O2, O2.−, and malondialdehyde (MDA) contents increased sharply in 8272N, and the antioxidant enzymes were also activated. A comparison of the enriched KEGG pathways among the differentially expressed genes (DEGs) between 8272 and 9311 indicated genes related to abiotic stress tolerance were highly expressed in 8272N. In contrast, the expression levels of the key genes in the carbon assimilation metabolic pathway were significantly lower in 8272N than in 9311N. A qRT-PCR analysis confirmed the results of the RNA-seq and antioxidant enzyme activity analyses. Thus, the chlorosis of 8272 leaves in response to intense light may be associated with the mechanisms contributing to the photosynthetic control of electron transport via carbon assimilation in leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data

The raw data have been submitted in supplemental Tables 4, 5, 6, 7.

Code availability

The software versions used in our work are described in supplemental Table 8.

References

  • Ahammed GJ, Xu W, Liu AR, Chen SC (2019) Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environ Exp Bot 161:303–311

    Article  CAS  Google Scholar 

  • Albert KR, Mikkelsen TN, Ro-Poulsen H (2008) Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum. Physiol Plant 133:199–210

    Article  CAS  PubMed  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  • Anderson JM, Chow WS, Park YI (1995) The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–139

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, East TM, Long SP (1983) Chilling damage to photosynthesis in young Zea mays: II. Photochemical function of thylakoids in vivo. J Exp Bot 34:189–197

    Article  CAS  Google Scholar 

  • Barber J, Andersson B (1992) Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci 17:61–66

    Article  CAS  PubMed  Google Scholar 

  • Bela K, Horváth E, Gallé Á, SzabadosbIrm L, Csiszár TJ (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  PubMed  Google Scholar 

  • Brouwer B, Bagard ZA, M, Keech O, Gardestr MP, (2012) The impact of light intensity on shade-induced leaf senescence. Plant, Cell Environ 35:1084–1098

    Article  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol Academic Press 52:302–310

    Article  CAS  Google Scholar 

  • Causin HF, Jauregui RN, Barneix AJ (2016) The effect of light spectral quality on leaf senescence and oxidative stress in wheat. Plant Sci 171:24–33

    Article  Google Scholar 

  • Chen S, Dai X, Qiang S, Tang Y (2005) Effect of a nonhost-selective toxin from Alternaria alternata on chloroplast-electron transfer activity in Eupatorium adenophorum. Plant Pathol 54:671–677

    Article  CAS  Google Scholar 

  • Chen PB, Li X, Huo K, Wei XD, Dai CC, Lv CG (2014) Promotion of photosynthesis in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene by nitric oxide donors. J Plant Physiol 171:458–466

    Article  CAS  PubMed  Google Scholar 

  • Chow WS, Anderson JM (1987) Photosynthetic responses of Pisum sativum to an increase in irradiance during growth I Photosynthetic Activities. Funct Plant Biol 14:1–8

    Article  CAS  Google Scholar 

  • Dao TT, Linthorst HJ, Verpoorte R (2011) Chalcone synthase and its functions in plant resistance. Phytochem Rev 10:397–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du HL, Yu Y, Ma YF, Gao Q, Cao YH, Chen Z, Ma B, Qi M, Li Y, Zhao XF, Wang J, Liu KF, Qin P, Yang X, Zhu LH, Li SG, Liang CZ (2017) Sequencing and de novo assembly of a near complete indica rice genome. Nat Commun 8:15324

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang T, Dong YP, Li YN, Chen DF, Chen XW (2015) Function of rice chloroplastic ascorbate peroxidases in drought and salt stress conditions. Plant Physiol J 51:2207–2213

    CAS  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    Article  CAS  PubMed  Google Scholar 

  • Foyer C, Furbank R, Harbinson J, Horton P (1990) The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynth Res 25:83–100

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Hagemann M, Bauwe H (2016) Photorespiration and the potential to improve photosynthesis. Curr Opin Chem Biol 35:109–116

    Article  CAS  PubMed  Google Scholar 

  • Jiang GH, Yin DD, Zhao JY, Chen HL, Guo LQ, Zhu LH, Zhai WX (2016) The rice thylakoid membrane-bound ascorbate peroxidase OsAPX8 functions in tolerance to bacterial blight. Sci Rep 6:26104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo JS, Lee YH, Song SI (2014) Rice CatA, CatB, and CatC are involved in environmental stress response, root growth, and photorespiration, respectively. J Plant Biol 57:375–382

    Article  CAS  Google Scholar 

  • Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdieve SI, Goltsev V (2014) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol Biochem 81:16–25

    Article  CAS  PubMed  Google Scholar 

  • Keech O, Pesquet E, Ahad A, Askne A, Nordvall DAG, Vodnala SM, Tuominen H, Hurry V, Dizengremel P, Gardestroem P (2007) The different fates of mitochondria and chloroplasts during dark induced senescence in Arabidopsis leaves. Plant, Cell Environ 30:1523–1534

    Article  CAS  Google Scholar 

  • Kennedy G, Burlingame B (2003) Analysis of food composition data on rice from a plant genetic resources perspective. Food Chem 80:589–596

    Article  CAS  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Biol 42:313–349

    Article  CAS  Google Scholar 

  • Li X, Jiao D, Dai C (2005) The response to photooxidation in leaves of PEPC transgenic rice plant (Oryza sativa L.). Acta Agron Sin 31:408–413

    Google Scholar 

  • Li JY, Tietz S, Cruz JA, Strand DD, Xu Y, Chen J, Kramer DM, Hu JP (2019) Photometric screens identified Arabidopsis peroxisome proteins that impact photosynthesis under dynamic light conditions. Plant J 97:460–474

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, Sun HW, Zhao QZ (2019) High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 256:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Lv CF, Xu ML, Hao PF, Wang YW, Shen WJ, Gao ZP, Chen GX, Lv CG (2017b) Analysis of chlorophyll a fluorescence and proteomic differences of rice leaves in response to photooxidation. Acta Physiol Plant 39:46

    Article  Google Scholar 

  • Ma J, Lv CF, Zhang BB, Wang F, Shen WJ, Chen GX, Gao ZP, Lv CG (2017c) Comparative analysis of ultrastructure, antioxidant enzyme activities, and photosynthetic performance in rice mutant 812HS prone to photooxidation. Photosynthetica 55:568–578

    Article  CAS  Google Scholar 

  • Ma J, Zhang BB, Wang F, Sun MM, Shen WJ, Lv CG, Gao ZP, Chen GX (2017a) RNA-Seq analysis of differentially expressed genes in rice under photooxidation. Russian J Plant Physiolc c64:698–706

    Article  Google Scholar 

  • Martinazzo R, Casolo S, Tantardini GF (2010) Symmetry-induced gap opening in graphene superlattices. Phys Rev B 81.

  • Maxwell DP, Falk S, Trick CG, Huner NPA (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105:535–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard D, Kumar V, Sproß J, Dietz KJ (2020) 12-oxophytodienoic acid reductase 3 (OPR3) functions as NADPH-dependent α, β-ketoalkene reductase in detoxification and monodehydroascorbate reductase in redox homeostasis. Plant Cell Physiol 61:584–595

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Hubbart S, Peng S, Horton P (2005) Acclimation of photosynthesis to high irradiance in rice: gene expression and interactions with leaf development. J Exp Bot 56:449–460

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Biol 50:333–359

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Ögren E, Rosenqvist E (1992) On the significance of photoinhibition of photosynthesis in the field and its generality among species. Photosynth Res 33:63–71

    Article  PubMed  Google Scholar 

  • Oukarroum A, Madidi SE, Schansker G, Strassera RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot 60:438–446

    Article  CAS  Google Scholar 

  • Park JH, Tran LH, Jung S (2017) Perturbations in the photosynthetic pigment status result in photooxidation-induced crosstalk between carotenoid and porphyrin biosynthetic pathways. Front Plant Sci 8:1992

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng J, Zhang L (2000) Causes for the formation and reduction mechanisms of photooxidation. Life Sci Res 4:83–90

    CAS  Google Scholar 

  • Qiao X, Shi G, Chen L, Tian X, Xu X (2013) Lead-induced oxidative damage in steriled seedlings of Nymphoides peltatum. Environ Sci Pollut Res 20:5047–5055

    Article  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Apel K, Lebedev N (1996) Evolution of chlorophyll biosynthesis-the challenge to survive photooxidation. Cell 86:703–705

    Article  CAS  PubMed  Google Scholar 

  • Schlüter U, Denton AK, Bräutigam A (2016) Understanding metabolite transport and metabolism in C4 plants through RNA-seq. Curr Opin Plant Biol 31:83–90

    Article  PubMed  Google Scholar 

  • Shen WJ, Chen GX, Xu JG, Zhen XH, Ma J, Zhang XJ, Lv CG, Gao ZP (2015) High light acclimation of Oryza sativa L. leaves involves specific photosynthetic-sourced changes of NADPH/NADP+ in the midvein. Protoplasma 252:77–87

    Article  CAS  PubMed  Google Scholar 

  • Sims DA, Pearcy RW (1992) Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light. Am J Bot 79:449–455

    Article  Google Scholar 

  • Song ZZ, Yang SY, Zuo J, Su YH (2014) Over-expression of ApKUP3 enhances potassium nutrition and drought tolerance in transgenic rice. Biol Plant 58:649–658

    Article  CAS  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. Chlorophyll a Fluorescence. Springer, Dordrecht, pp 321–362

    Book  Google Scholar 

  • Ueda Y, Uehara N, Sasaki H, Kobayashi K, Yamakawa T (2013) Impacts of acute ozone stress on superoxide dismutase (SOD) expression and reactive oxygen species (ROS) formation in rice leaves. Plant Physiol Biochem 70:396–402

    Article  CAS  PubMed  Google Scholar 

  • Wang YW, Xu C, Lv CF, Wu M, Cai XJ, Liu ZT, Song XM, Chen GX, Lv CG (2016b) Chlorophyll a fluorescence analysis of high-yield rice (Oryza sativa L.) LYPJ during leaf senescence. Photosynthetica 54:422–429

    Article  CAS  Google Scholar 

  • Wang F, Liu J, Chen M, Zhou L, Li Z, Zhao Q, Pan G, Zaidi SH, Cheng F (2016) Involvement of abscisic acid in PSII photodamage and D1 protein turnover for light-induced premature senescence of rice flag leaves. PLoS One 11.

  • Wang Y, Xu C, Wu M, Chen G (2017) Characterization of photosynthetic performance during reproductive stage in high-yield hybrid rice LYPJ exposed to drought stress probed by chlorophyll a fluorescence transient. Plant Growth Regul 81:489–499

    Article  CAS  Google Scholar 

  • Weng XY, Xu HX, Yang Y, Peng HH (2008) Water-water cycle involved in dissipation of excess photon energy in phosphorus deficient rice leaves. Biol Plant 52:307

    Article  CAS  Google Scholar 

  • Werner C, Ryel RJ, Correia O, Beyschlag W (2001) Effects of photoinhibition on whole plant carbon gain assessed with a photosynthesis model. Plant Cell Environ 24:27–40

    Article  CAS  Google Scholar 

  • Xie X, Huang A, Gu WH, Zang ZR, Pan GH, Gao S, He LW, Zhang BY, Niu JF, Lin AP, Wang GC (2016) Photorespiration participates in the assimilation of acetate in Chlorella sorokiniana under high light. New Phytol 209:987–998

    Article  CAS  PubMed  Google Scholar 

  • Xu QS, Hu JZ, Xie KB, Yang HY, Du KH, Shi GX (2010) Accumulation and acute toxicity of silver in Potamogeton crispus L. J Hazard Mater 173:186–193

    Article  CAS  PubMed  Google Scholar 

  • Xu JG, Lv CG, Liu L, Lv CF, Ma J, Xia SJ, Chen GX, Gao ZP (2016) Characteristics of photosynthesis and antioxidation in rice photo-oxidation mutant 812HS. Acta Agron Sin 42:574–582

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1997) Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynth Res 52:57–64

    Article  CAS  Google Scholar 

  • Zhang ZS, Lu YS, Zhai LG, Deng RS, Jiang J, Li Y, He ZH, Peng XX (2012) Glycolate oxidase isozymes are coordinately controlled by GLO1 and GLO4 in rice. PLoS One 7.

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

  • Zhu XY, Guo S, Wang ZW, Du Q, Xing YD, Zhang TQ, Shen WQ, Ling YH, He GH (2016) Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). BMC Plant Biol 16:134

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31671663) and the China National Major Research Project (2016ZX08001004001008). We thank Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac) for editing the English text of a draft of this manuscript.

Funding

The National Natural Science Foundation of China (31,671,663) and the China National Major Research Project (2016ZX08001004001008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lv Chuangen.

Ethics declarations

Conflict of interest

The authors have no commercial or associated interest that represents a conflict of interest in connection with the submitted manuscript.

Additional information

Communicated by P. Wojtaszek.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 67 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanda, Z., Qijun, Z., Enxing, X. et al. Sensitivity of rice to photooxidation associated with antioxidant enzyme activity and carbon assimilation. Acta Physiol Plant 43, 86 (2021). https://doi.org/10.1007/s11738-021-03260-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-021-03260-y

Keywords

Navigation