Skip to main content
Log in

A model for the second strain gradient continua reinforced with extensible fibers in plane elastostatics

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A second strain gradient theory-based continuum model is presented for the mechanics of an elastic solid reinforced with extensible fibers in plane elastostatics. The extension and bending kinematics of fibers are formulated via the second and the third gradient of the continuum deformation. The Euler equations arising in the third gradient of virtual displacement are then formulated by means of iterated integration by parts and variational principles. A rigorous derivation of the associated boundary conditions is also presented from which the expressions of triple forces and stresses are obtained. The obtained triple forces are found to be in conjugation with the Piola-type triple stress and are necessary to determine energy contributions on edges and points of Cauchy cuts. In particular, a complete linear model including admissible boundary conditions is derived within the description of superposed incremental deformations. The obtained analytical solution predicts smooth deformation profiles and, more importantly, assimilate gradual and dilatational shear angle distributions throughout the domain of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Spencer, A.J.M.: Deformations of Fibre-Reinforced Materials. Oxford University Press, Oxford (1972)

    MATH  Google Scholar 

  2. Pipkin, A.C.: Stress analysis for fiber-reinforced materials. Adv. Appl. Mech. 19, 1–51 (1979)

    Article  MATH  Google Scholar 

  3. Landau, L.D., Lifšic, E.M.: Theory of Elasticity. Pergamon Press, London (1986)

    Google Scholar 

  4. Dill, E.H.: Kirchhoffs theory of rods. Arch. Hist. Exact Sci. 44, 1–23 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antman, S.S.: Elasticity. Nonlinear Probl. Elast. Appl. Math. Sci. pp. 457–530 (1995)

  6. Steigmann, D.J.: Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. Int. J. Non Linear Mech. 47, 734–742 (2012)

    Article  ADS  Google Scholar 

  7. Kim, C.I.: Superposed incremental deformations of an elastic solid reinforced with fibers resistant to extension and flexure. Adv. Mater. Sci. Eng. 2018, 1–11 (2018)

    ADS  Google Scholar 

  8. Kim, C.I., Zeidi, M.: Gradient elasticity theory for fiber composites with fibers resistant to extension and flexure. Int. J. Eng. Sci. 131, 80–99 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Spencer, A., Soldatos, K.: Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness. Int. J. Non Linear Mech. 42, 355–368 (2007)

    Article  ADS  Google Scholar 

  10. Mulhern, J., Rogers, T., Spencer, A.: A continuum theory of a plastic-elastic fibre-reinforced material. Int. J. Eng. Sci. 7, 129–152 (1969)

    Article  MATH  Google Scholar 

  11. Pipkin, A.C., Rogers, T.G.: Plane deformations of incompressible fiber-reinforced materials. J. Appl. Mech. 38, 634–640 (1971)

    Article  ADS  MATH  Google Scholar 

  12. Dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Philos. Trans. R. Soc. Lond. Ser. 472, 20150790 (2016)

    ADS  Google Scholar 

  13. Dell’Isola, F., Corte, A.D., Greco, L., Luongo, A.: Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016)

    Article  Google Scholar 

  14. Dell’Isola, F., Cuomo, M., Greco, L., Corte, A.D.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103, 127–157 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zeidi, M., Kim, C.I.: Finite plane deformations of elastic solids reinforced with fibers resistant to flexure: complete solution. Arch. Appl. Mech. 88, 819–835 (2017)

    Article  Google Scholar 

  16. Zeidi, M., Kim, C.I.L.: Mechanics of an elastic solid reinforced with bidirectional fiber in finite plane elastostatics: complete analysis. Continuum Mech. Thermodyn. 30, 573–592 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zeidi, M., Kim, C.I.: Mechanics of fiber composites with fibers resistant to extension and flexure. Math. Mech. Solids. 24, 3–17 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Islam, S., Zhalmuratova, D., Chung, H.-J., Kim, C.I.: A model for hyperelastic materials reinforced with fibers resistance to extension and flexure. Int. J. Solids Struct. 193–194, 418–433 (2020)

    Article  Google Scholar 

  19. Javili, A., Dellisola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids. 61, 2381–2401 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Askes, H., Suiker, A.S.J., Sluys, L.J.: A classification of higher-order strain-gradient models—linear analysis. Arch. Appl. Mech. 72, 171–188 (2002)

    Article  ADS  MATH  Google Scholar 

  21. Dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert’’. Z. Angew. Math. Phys. 63, 1119–1141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dell’Isola, F., Corte, A.D., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids. 22, 852–872 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Romeo, F., Luongo, A.: Vibration reduction in piecewise bi-coupled periodic structures. J. Sound Vib. 268, 601–615 (2003)

    Article  ADS  Google Scholar 

  24. Luongo, A., Romeo, F.: Real wave vectors for dynamic analysis of periodic structures. J. Sound Vib. 279, 309–325 (2005)

    Article  ADS  Google Scholar 

  25. Marin, M., Nicaise, S.: Existence and stability results for thermoelastic dipolar bodies with double porosity. Continuum Mech. Thermodyn. 28(6), 1645–1657 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Muhammad, M., Marin, M., Ahmed, Z., Ellahi, R., Sara, I.: Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. Front. Phys. 8, 1–12 (2020)

    Google Scholar 

  27. Jasiuk, I., Ostoja-Starzewski, M.: Modeling of bone at a single lamella level. Biomech. Model. Mechanobiol. 3, 67–74 (2004)

    Article  Google Scholar 

  28. Andreaus, U., Giorgio, I., Madeo, A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Z. Angew. Math. Phys. 66, 209–237 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Giorgio, I., Andreaus, U., dell’Isola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech. Lett. 13, 141–147 (2017)

    Article  Google Scholar 

  30. Mindlin, R.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  31. Luongo, A., Piccardo, G.: Non-linear galloping of sagged cables in 1:2 internal resonance. J. Sound Vib. 214, 915–940 (1998)

    Article  ADS  Google Scholar 

  32. Luongo, A., Piccardo, G.: Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 288, 1027–1047 (2005)

    Article  ADS  Google Scholar 

  33. Paolone, A., Vasta, M., Luongo, A.: Flexural-torsional bifurcations of a cantilever beam under potential and circulatory forces I: non-linear model and stability analysis. Int. J. Non Linear Mech. 41, 586–594 (2006)

    Article  ADS  Google Scholar 

  34. Kim, C.I., Islam, S.: Mechanics of third-gradient continua reinforced with fibers resistant to flexure in finite plane elastostatics. Continuum Mech. Thermodyn. 32, 1595–1617 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. Bolouri, S.E.S., Kim, C.I., Yang, S.: Linear theory for the mechanics of third-gradient continua reinforced with fibers resistance to flexure. Math. Mech. Solids. 25, 937–960 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM. J. Appl. Math. 25, 556–575 (1973)

    Article  MATH  Google Scholar 

  37. Dell’Isola, F., Seppecher, P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. C. R. Acad. Sci. IIb. Mec. Elsevier, p. 7 (1995)

  38. Alibert, J.J., Seppecher, P., Dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids. 8, 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Read, W.: Series solutions for Laplaces equation with nonhomogeneous mixed boundary conditions and irregular boundaries. Math. Comput. Modell. 17, 9–19 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  40. Read, W.: Analytical solutions for a Helmholtz equation with Dirichlet boundary conditions and arbitrary boundaries. Math. Comput. Modell. 24, 23–34 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Huang, Y., Zhang, X.-J.: General analytical solution of transverse vibration for orthotropic rectangular thin plates. J. Mar. Sci. Appl. 1, 78–82 (2002)

    Article  Google Scholar 

  42. Dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118, 113–125 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  44. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  45. Koiter, W.T.: Couple-stresses in the theory of elasticity. Proc. K. Ned. Akad. Wetensc. 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  46. Steigmann, D.J.: Finite Elasticity Theory. Oxford University Press, Oxford (2017)

    Book  MATH  Google Scholar 

  47. Ogden, R.: Non-linear Elastic Deformations, vol. 1, p. 119. Courier Corporation, Chelmsford (1984)

    Google Scholar 

  48. Bersani, A., dell’Isola, F., Seppecher, P.: Lagrange multipliers in infinite dimensional spaces, examples of application. In: Altenbach, H., Ochsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2019)

    Google Scholar 

  49. England, A.H.: Complex Variable Methods in Elasticity. Wiley, London (2013)

    MATH  Google Scholar 

  50. Timoshenko, S.P., Goodier, J.: N: Theory of Elasticity, 3rd edn. McGraw Hill, London (2010)

    MATH  Google Scholar 

  51. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhof, Groningen (1963)

    MATH  Google Scholar 

  52. Kim, C.I.: Strain-gradient elasticity theory for the mechanics of fiber composites subjected to finite plane deformations: comprehensive analysis. Multiscale Sci. Eng. 1, 150–160 (2019)

    Article  ADS  Google Scholar 

  53. Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2), 04016112-1–13 (2017). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001184

    Article  Google Scholar 

  54. Giorgio, I.: Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial. Continuum Mech. Thermodyn. (2020). https://doi.org/10.1007/s00161-020-00955-4

    Article  Google Scholar 

  55. Giorgio, I., Ciallella, A., Scerrato, D.: A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: Some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials. Int. J. Solids Struct. 203, 73–83 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada via Grant #RGPIN 04742 and the University of Alberta through a start-up Grant. Kim would like to thank Dr. David Steigmann for stimulating his interest in this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-il Kim.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\(\bullet \) Algebraic procedures for \(a_{m},b_{m},c_{m}\) and \(d_{m}\)

$$\begin{aligned} a_{m}= & {} \frac{(T_{2}+T_{1})}{2},b_{m}=\frac{(T_{2}-T_{1})}{2i},c_{m}=\frac{ T_{3}}{i},d_{m}=T_{4}\text {, }m=\frac{n\pi }{2d}(n=1,3,5,etc.), \nonumber \\ T_{1}= & {} \left[ \frac{T_{24}}{4A}-T_{5}-\left\{ -T_{8}(T_{18})^{2}-9T_{8}(T_{10})^{\frac{ 2}{3}}+12T_{17}T_{8}-T_{6}+\frac{12(T_{10})^{\frac{1}{3}}T_{8}T_{18}}{T_{7}} \right\} ^{0.5}\right] ^{0.5}, \nonumber \\ T_{2}= & {} \left[ \frac{T_{24}}{4A}-T_{5}+\left\{ -T_{8}(T_{18})^{2}-9T_{8}(T_{10})^{\frac{ 2}{3}}+12T_{17}T_{8}-T_{6}+\frac{12(T_{10})^{\frac{1}{3}}T_{8}T_{18}}{T_{7}} \right\} ^{0.5}\right] ^{0.5}, \nonumber \\ T_{3}= & {} \left[ \frac{T_{24}}{4A}+T_{5}-\left\{ -T_{8}(T_{18})^{2}-9T_{8}(T_{10})^{\frac{ 2}{3}}+12T_{17}T_{8}+T_{6}+\frac{12(T_{10})^{\frac{1}{3}}T_{8}T_{18}}{T_{7}} \right\} ^{0.5}\right] ^{0.5}, \nonumber \\ T_{4}= & {} \left[ \frac{T_{24}}{4A}+T_{5}+\left\{ -T_{8}(T_{18})^{2}-9T_{8}(T_{10})^{\frac{ 2}{3}}+12T_{17}T_{8}+T_{6}+\frac{12(T_{10})^{\frac{1}{3}}T_{8}T_{18}}{T_{7}} \right\} ^{0.5}\right] ^{0.5}, \nonumber \\ T_{5}= & {} \frac{T8}{6(T_{9})^{\frac{1}{6}}},T_{6}=3\sqrt{6} T_{19}\left[ 27(T_{19})^{2}+3\sqrt{3}T_{15}-72T_{17}T_{18}-2(T_{18})^{3}\right] ^{0.5}, \nonumber \\ T_{7}= & {} 6(T_{9})^{\frac{1}{6}}\left[ 6T_{18}(T_{9})^{\frac{1}{3}}+9(T_{9})^{\frac{ 2}{3}}-T_{12}+\frac{12m^{4}}{A}+(T_{18})^{2}+T_{11}-\frac{3T_{24}T_{16}}{ A^{2}}\right] ^{\frac{1}{4}}, \nonumber \\ T_{8}= & {} \left[ 6T_{18}(T_{10})^{\frac{1}{3}}+9(T_{10})^{\frac{2}{3}}-T_{12}+\frac{ 12m^{4}}{A}+(T_{18})^{2}-\frac{3T_{24}T_{22}}{A^{2}}+T_{11}\right] ^{\frac{1}{2}}, \nonumber \\ T_{9}= & {} \frac{(T_{14})^{2}}{2}-\frac{4T_{18}T_{13}}{3}+\left( \frac{\sqrt{3}}{18} \right) \Big [12(T_{18})^{2}(T_{13})^{2}+27(T_{14})^{4}+16(T_{18})^{4}T_{13}+256(T_{13})^{3} \nonumber \\&-4(T_{18})^{3}(T_{14})^{2}-144T_{18}(T_{14})^{2}T_{13}-\frac{(T_{18})^{3}}{ 27}\Big ]^{0.5}, \nonumber \\ T_{10}= & {} \frac{(T_{19})^{2}}{2}+\frac{\sqrt{3}T_{15}}{18}-\frac{ 4T_{18}T_{17}}{3}-\frac{(T_{18})^{3}}{27},T_{11}=\frac{3(T_{24})^{2}T_{23}}{ 4A^{3}},T_{12}=\frac{9(T_{24})^{4}}{64A^{4}}, \nonumber \\ T_{13}= & {} T_{21}-\frac{m^{4}}{A}-T_{20}+\frac{T_{24}T_{16}}{4A^{2}},T_{14}= \frac{(T_{24})^{3}}{8A^{3}}+\frac{T_{16}}{A}-\frac{T_{24}T_{23}}{2A^{2}}, \nonumber \\ T_{15}= & {} \Big [27(T_{19})^{4}+T_{16}T_{17}(T_{18})^{4}+256(T_{17})^{3}-4(T_{18})^{3}(T_{19})^{2}, \nonumber \\&+128(T_{18})^{2}(T_{17})^{2}-144T_{18}(T_{19})^{2}T_{17}\Big ]^{0.5}, \nonumber \\ T_{16}= & {} (2+E)m^{2},T_{17}=T_{21}-\frac{m^{4}}{A}+\frac{T_{24}T_{22}}{4A^{2} }-T_{20}, \nonumber \\ T_{18}= & {} \frac{3(T_{24})^{2}}{8A^{2}}-\frac{T_{23}}{A},T_{19}=\frac{ (T_{24})^{3}}{8A^{3}}+\frac{T_{22}}{A}+\frac{T_{24}T_{23}}{2A^{2}},T_{20}= \frac{(T_{24})^{2}T_{23}}{16A^{3}},T_{21}=\frac{3(T_{24})^{4}}{256A^{4}}, \nonumber \\ T_{22}= & {} (2+E)m^{2},T_{23}=Cm^{2}+1\text { and }T_{24}=Am^{2}+C. \end{aligned}$$
(A.1)

\(\bullet \) Evaluation of the geodesic curvature of the fibers

The geodesic curvature of a parametric curve (\(\mathbf {r}(S)\)) can be obtained by evaluating the second derivative of \(\mathbf {r}(S)\) with respect to the arc length parameter (S);

$$\begin{aligned} \mathbf {g=r}^{\prime \prime }=\frac{d^{2}\mathbf {r(}S\mathbf {)}}{ dS^{2}}. \end{aligned}$$
(A.2)

Using the chain rule (i.e., \(\mathrm{{d}}(*)/\mathrm{{d}}S=\frac{\mathrm{{d}}(*)}{\mathrm{{d}}\mathbf {X}}\frac{\mathrm{{d}} \mathbf {X}}{\mathrm{{d}}S}\)), we obtain from Eq. (A2) that

$$\begin{aligned} \frac{\mathrm{{d}}^{2}\mathbf {r(}S\mathbf {)}}{\mathrm{{d}}S^{2}}=\frac{\mathrm{{d}}\big (\frac{\mathrm{{d}}\mathbf {r(}S \mathbf {)}}{\mathrm{{d}}S}\big )}{\mathrm{{d}}S}=\frac{\mathrm{{d}}\big (\frac{\mathrm{{d}}\varvec{\chi } (S\mathbf {)}}{\mathrm{{d}}\mathbf {X}} \frac{\mathrm{{d}}\mathbf {X}}{\mathrm{{d}}S}\big )}{\mathrm{{d}}S}=\left( \frac{\mathrm{{d}}\big (\frac{\mathrm{{d}}\varvec{\chi (}S\mathbf {)}}{\mathrm{{d}} \mathbf {X}}\frac{\mathrm{{d}}\mathbf {X}}{\mathrm{{d}}S}\big )}{\mathrm{{d}}\mathbf {X}}\right) \frac{\mathrm{{d}}\mathbf {X}}{\mathrm{{d}}S}. \end{aligned}$$
(A.3)

Since \(\mathbf {F}=\mathrm{{d}}\varvec{\chi }/\mathrm{{d}}\mathbf {X}\) and \(\mathbf {D}=(\mathrm{{d}}\mathbf {X} (S))/\mathrm{{d}}S\), the above can be rewritten as

$$\begin{aligned} \mathbf {g=r}^{\prime \prime }=\left( \frac{\mathrm{{d}}\big (\frac{\mathrm{{d}}\varvec{\chi (}S \mathbf {)}}{\mathrm{{d}}\mathbf {X}}\frac{\mathrm{{d}}\mathbf {X}}{\mathrm{{d}}S}\big )}{\mathrm{{d}}\mathbf {X}}\right) \frac{\mathrm{{d}}\mathbf { X}}{\mathrm{{d}}S}=\left( \frac{\mathrm{{d}}(\mathbf {FD})}{\mathrm{{d}}\mathbf {X}}\right) \mathbf {D=}\nabla [\mathbf {FD]D,} \end{aligned}$$
(A.4)

where \(\nabla (\mathbf {FD})=\mathrm{{d}}(\mathbf {FD})/\mathrm{{d}}\mathbf {X}\) is the first gradient of “ \(\mathbf {FD}\)” .

\(\bullet \) Evaluation of the rate of changes in curvature of the fibers

The rate of changes in curvature of the fibers can be formulated by taking third derivative of \(\mathbf {r}(S)\) with respect to the arc length parameter (S). Hence, from Eq. (A4), we find

$$\begin{aligned} \varvec{\alpha } =\mathbf{r}^{\prime \prime \prime }=\frac{\mathrm{{d}}^{3}\mathbf {r(}S \mathbf {)}}{\mathrm{{d}}S^{3}}=\frac{\mathrm{{d}}\big (\frac{\mathrm{{d}}^{2}\mathbf {r(}S\mathbf {)}}{\mathrm{{d}}S^{2}}\big )}{\mathrm{{d}}S}= \frac{\mathrm{{d}}\big (\frac{\mathrm{{d}}(\mathbf {FD})}{\mathrm{{d}}\mathbf {X}}\frac{\mathrm{{d}}\mathbf {X}}{\mathrm{{d}}S}\big )}{\mathrm{{d}}S}. \end{aligned}$$
(A.5)

Now applying the chain rule (i.e., \(\mathrm{{d}}(*)/\mathrm{{d}}S=\frac{\mathrm{{d}}(*)}{\mathrm{{d}}\mathbf {X}} \frac{\mathrm{{d}}\mathbf {X}}{\mathrm{{d}}S}\)), Eq. (A5) Becomes

$$\begin{aligned} \frac{\mathrm{{d}}^{3}\mathbf {r(}S\mathbf {)}}{\mathrm{{d}}S^{3}}=\frac{\mathrm{{d}}\big (\frac{\mathrm{{d}}(\mathbf {FD})}{\mathrm{{d}} \mathbf {X}}\frac{\mathrm{{d}}\mathbf {X}}{\mathrm{{d}}S}\big )}{\mathrm{{d}}S}=\frac{\mathrm{{d}}\big (\frac{\mathrm{{d}}(\mathbf {FD})}{\mathrm{{d}} \mathbf {X}}\frac{\mathrm{{d}}\mathbf {X}}{\mathrm{{d}}S}\big )}{\mathrm{{d}}\mathbf {X}}\frac{\mathrm{{d}}\mathbf {X}}{\mathrm{{d}}S}=\left[ \frac{\mathrm{{d}}^{2}(\mathbf {FD})}{\mathrm{{d}}\mathbf {X}^{2}}\frac{\mathrm{{d}}\mathbf {X}}{\mathrm{{d}}S}+\frac{\mathrm{{d}}( \mathbf {FD})}{\mathrm{{d}}\mathbf {X}}\frac{\mathrm{{d}}^{2}\mathbf {X}}{\mathrm{{d}}S^{2}}\right] \frac{\mathrm{{d}}\mathbf {X}}{ \mathrm{{d}}S}. \end{aligned}$$
(A.6)

Since \(\mathbf {D}=(\mathrm{{d}}\mathbf {X}(S))/\mathrm{{d}}S\), the above can be rewritten as

$$\begin{aligned} \varvec{\alpha } =\mathbf{r}^{\prime \prime \prime }=\left[ \frac{\mathrm{{d}}^{2}(\mathbf {FD}) }{\mathrm{{d}}\mathbf {X}^{2}}\frac{\mathrm{{d}}\mathbf {X}}{\mathrm{{d}}S}+\frac{\mathrm{{d}}(\mathbf {FD})}{\mathrm{{d}}\mathbf {X}} \frac{\mathrm{{d}}^{2}\mathbf {X}}{\mathrm{{d}}S^{2}}\right] \frac{\mathrm{{d}}\mathbf {X}}{\mathrm{{d}}S}=[\nabla \{\nabla ( \mathbf {FD})\}{} \mathbf{D}+\nabla (\mathbf {FD})(\nabla \mathbf {(D))}]\mathbf{D,} \end{aligned}$$
(A.7)

where \(\nabla (\nabla (\mathbf {FD}))=\mathrm{{d}}^{2}(\mathbf {FD})/\mathrm{{d}}\mathbf {X}^{2}\) is the second gradient of “ \(\mathbf {FD}\) ”.

\(\bullet \) Implementation of the boundary conditions [Eq. (53)]

The boundary conditions in Eq. (53) can be readily implemented in the desired boundaries via the tangential and normal vectors of the boundary and the director field of the fibers. For example, in the case of aligned fibers in the direction of \(\mathbf {X}_{1}\), we find

$$\begin{aligned} \mathbf {D=}D_{1}\mathbf {E}_{1}+D_{2} \mathbf {E}_{2}=D_{1}\mathbf {E}_{1};\text { \ }D_{1}=1\text { and }D_{2}=0. \end{aligned}$$
(A.8)

Now on \(\Omega _{1}\), the unit normal and tangent to the boundary are defined by (see Fig. 15)

$$\begin{aligned} \mathbf {T}^{1}= & {} T_{1}^{1}\mathbf {E}_{1}+T_{2}^{1}\mathbf {E} _{2}=T_{2}^{1}\mathbf {E}_{2};\text { \ }T_{1}^{1}=0\text { and }T_{2}^{1}=1, \nonumber \\ \mathbf {N}^{1}= & {} N_{1}^{1}\mathbf {E}_{1}+N_{2}^{1}\mathbf {E} _{2}=N_{1}^{1}\mathbf {E}_{1};\text { \ }N_{1}^{1}=1\text { and }N_{2}^{1}=0. \end{aligned}$$
(A.9)
Fig. 15
figure 15

Schematic demonstration of imposed boundary conditions

Hence, on \(\Omega _{1}\), the corresponding boundary conditions can be obtained by

$$\begin{aligned} t_{1}^{1}\mathbf {e}_{1}= & {} \big (P_{11}N_{1}^{1}+P_{12}N_{2}^{1}\big ) \mathbf {e}_{1}=P_{11}\mathbf {e}_{1}, \nonumber \\ t_{2}^{1}\mathbf {e}_{2}= & {} \big (P_{21}N_{1}^{1}+P_{22}N_{2}^{1}\big ) \mathbf {e}_{2}=P_{21}\mathbf {e}_{2}, \nonumber \\ m_{1}^{1}\mathbf {e}_{1}= & {} \big (Cg_{1}-A\alpha _{1,1}D_{1}^{1}-A\alpha _{1,2}D_{2}^{1}\big )\big ( D_{1}^{1}N_{1}^{1}D_{1}^{1}N_{1}^{1}+D_{1}^{1}N_{1}^{1}D_{2}^{1}N_{2}^{1}+D_{2}^{1}N_{2}^{1}D_{1}^{1}N_{1}^{1}+D_{2}^{1}N_{2}^{1}D_{2}^{1}N_{2}^{1}\big ) \mathbf {e}_{1} \nonumber \\= & {} (Cg_{1}-A\alpha _{1,1})\mathbf {e}_{1}, \nonumber \\ m_{2}^{1}\mathbf {e}_{2}= & {} \big (Cg_{2}-A\alpha _{2,1}D_{1}^{1}-A\alpha _{2,2}D_{2}^{1}\big )\big ( D_{1}^{1}N_{1}^{1}D_{1}^{1}N_{1}^{1}+D_{1}^{1}N_{1}^{1}D_{2}^{1}N_{2}^{1}+D_{2}^{1}N_{2}^{1}D_{1}^{1}N_{1}^{1}+D_{2}^{1}N_{2}^{1}D_{2}^{1}N_{2}^{1}\big ) \mathbf {e}_{2} \nonumber \\= & {} (Cg_{2}-A\alpha _{2,1})\mathbf {e}_{2}, \nonumber \\ r_{1}^{1}\mathbf {e}_{1}= & {} A\alpha _{1}\big ( D_{1}^{1}N_{1}^{1}D_{1}^{1}N_{1}^{1}D_{1}^{1}N_{1}^{1}+D_{1}^{1}N_{1}^{1}D_{2}^{1}N_{2}^{1}D_{1}^{1}N_{1}^{1}+D_{2}^{1}N_{2}^{1}D_{1}^{1}N_{1}^{1}D_{1}^{1}N_{1}^{1}+D_{2}^{1}N_{2}^{1}D_{2}^{1}N_{2}^{1}D_{1}^{1}N_{1}^{1}\nonumber \\&+D_{2}^{1}N_{2}^{1}D_{1}^{1}N_{1}^{1}D_{2}^{1}N_{2}^{1}+D_{2}^{1}N_{2}^{1}D_{2}^{1}N_{2}^{1}D_{2}^{1}N_{2}^{1}\big ) \mathbf {e}_{1}=A\alpha _{1}\mathbf {e}_{1},\nonumber \\ r_{2}^{1}\mathbf {e}_{2}= & {} A\alpha _{2}\big ( D_{1}^{1}N_{1}^{1}D_{1}^{1}N_{1}^{1}D_{1}^{1}N_{1}^{1}+D_{1}^{1}N_{1}^{1}D_{2}^{1}N_{2}^{1}D_{1}^{1}N_{1}^{1}+D_{2}^{1}N_{2}^{1}D_{1}^{1}N_{1}^{1}D_{1}^{1}N_{1}^{1}+D_{2}^{1}N_{2}^{1}D_{2}^{1}N_{2}^{1}D_{1}^{1}N_{1}^{1}\nonumber \\&+D_{2}^{1}N_{2}^{1}D_{1}^{1}N_{1}^{1}D_{2}^{1}N_{2}^{1}+D_{2}^{1}N_{2}^{1}D_{2}^{1}N_{2}^{1}D_{2}^{1}N_{2}^{1}\big ) \mathbf {e}_{2}=A\alpha _{2}\mathbf {e}_{2}, \end{aligned}$$
(A.10)

where \(\mathbf {t}^{1}=t_{1}^{1}\mathbf {e}_{1}+t_{2}^{1}\mathbf {e}_{2}\), \( \mathbf {m}^{1}=m_{1}^{1}\mathbf {e}_{1}+m_{2}^{1}\mathbf {e}_{2}\) and \(\mathbf { r}^{1}=r_{1}^{1}\mathbf {e}_{1}+r_{2}^{1}\mathbf {e}_{2}\) are, respectively, the boundary traction, edge moment and the triple force acting on the \( \Omega _{1}\) boundary.

For \(\Omega _{2}\) boundary, we find (see Fig. 15)

$$\begin{aligned} \mathbf {T}^{2}= & {} T_{1}^{2}\mathbf {E}_{1}+T_{2}^{2}\mathbf {E} _{2}=T_{2}^{2}\mathbf {E}_{2};\text { \ }T_{1}^{2}=0\text { and }T_{2}^{2}=1,\nonumber \\ \mathbf {N}^{2}= & {} N_{1}^{2}\mathbf {E}_{1}+N_{2}^{2}\mathbf {E} _{2}=N_{1}^{2}\mathbf {E}_{1};\text { \ }N_{1}^{2}=1\text { and }N_{2}^{2}=0. \end{aligned}$$
(A.11)

Therefore, repeating the same process as done in the above, it can be shown that

$$\begin{aligned} t_{1}^{2}\mathbf {e}_{1}= & {} \big (P_{11}N_{1}^{2}+P_{12}N_{2}^{2}\big ) \mathbf {e}_{1}=P_{12}\mathbf {e}_{1}, \nonumber \\ t_{1}^{1}\mathbf {e}_{1}= & {} \big (P_{21}N_{1}^{2}+P_{22}N_{2}^{2}\big ) \mathbf {e}_{2}=P_{22}\mathbf {e}_{2}, \nonumber \\ m_{1}^{1}\mathbf {e}_{1}= & {} 0\mathbf {e}_{1} {{, }} m_{2}^{1}\mathbf {e}_{2}=0\mathbf {e}_{2}, \nonumber \\ r_{1}^{1}\mathbf {e}_{1}= & {} 0\mathbf {e}_{1}, r_{2}^{1}\mathbf {e}_{2}=0\mathbf {e}_{2}. \end{aligned}$$
(A.12)

Lastly, Eq. (A12) indicates that the edge moment and triple force cannot be sustained by the \(\Omega _{2}\) boundary where no reinforcing fibers are aligned in \(\mathbf {e}_{2}\) direction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolouri, S.E.S., Kim, Ci. A model for the second strain gradient continua reinforced with extensible fibers in plane elastostatics. Continuum Mech. Thermodyn. 33, 2141–2165 (2021). https://doi.org/10.1007/s00161-021-01015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01015-1

Keywords

Navigation