1932

Abstract

Accurate control of gene expression in the right cell at the right moment is of fundamental importance to animal development and homeostasis. At the heart of gene regulation lie the enhancers, a class of gene regulatory elements that ensures precise spatiotemporal activation of gene transcription. Mammalian genomes are littered with enhancers, which are frequently organized in cooperative clusters such as locus control regions and superenhancers. Here, we discuss our current knowledge of enhancer biology, including an overview of the discovery of the various enhancer subsets and the mechanistic models used to explain their gene regulatory function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-122220-093818
2021-08-31
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/genom/22/1/annurev-genom-122220-093818.html?itemId=/content/journals/10.1146/annurev-genom-122220-093818&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alexander JM, Guan J, Li B, Maliskova L, Song M et al. 2019. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. eLife 8:e41769
    [Google Scholar]
  2. 2. 
    Allahyar A, Vermeulen C, Bouwman BAM, Krijger PHL, Verstegen MJAM et al. 2018. Enhancer hubs and loop collisions identified from single-allele topologies. Nat. Genet. 50:1151–60
    [Google Scholar]
  3. 3. 
    Aydin B, Mazzoni EO 2019. Cell reprogramming: the many roads to success. Annu. Rev. Cell Dev. Biol. 35:433–52
    [Google Scholar]
  4. 4. 
    Bahr C, Von Paleske L, Uslu VV, Remeseiro S, Takayama N et al. 2018. A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature 553:515–20
    [Google Scholar]
  5. 5. 
    Banerji J, Olson L, Schaffner W 1983. A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33:729–40
    [Google Scholar]
  6. 6. 
    Banerji J, Rusconi S, Schaffner W 1981. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27:299–308
    [Google Scholar]
  7. 7. 
    Barakat TS, Halbritter F, Zhang M, Rendeiro AF, Perenthaler E et al. 2018. Functional dissection of the enhancer repertoire in human embryonic stem cells. Cell Stem Cell 23:276–88.e8
    [Google Scholar]
  8. 8. 
    Beagrie RA, Scialdone A, Schueler M, Kraemer DCA, Chotalia M et al. 2017. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543:519–24
    [Google Scholar]
  9. 9. 
    Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S et al. 2019. Decreased enhancer-promoter proximity accompanying enhancer activation. Mol. Cell 76:473–84.e7
    [Google Scholar]
  10. 10. 
    Bender MA, Ragoczy T, Lee J, Byron R, Telling A et al. 2012. The hypersensitive sites of the murine β-globin locus control region act independently to affect nuclear localization and transcriptional elongation. Blood 119:3820–27
    [Google Scholar]
  11. 11. 
    Boija A, Klein IA, Sabari BR, Dall'Agnese A, Coffey EL et al. 2018. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175:1842–55.e16
    [Google Scholar]
  12. 12. 
    Brand AH, Breeden L, Abraham J, Sternglanz R, Nasmyth K. 1985. Characterization of a “silencer” in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer. Cell 41:41–48
    [Google Scholar]
  13. 13. 
    Brinster R. 1981. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27:223–31
    [Google Scholar]
  14. 14. 
    Bulger M, Groudine M. 1999. Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13:2465–77
    [Google Scholar]
  15. 15. 
    Bungert J, Davé U, Lim KC, Lieuw KH, Shavit JA et al. 1995. Synergistic regulation of human β-globin gene switching by locus control region elements HS3 and HS4. Genes Dev 9:3083–96
    [Google Scholar]
  16. 16. 
    Calo E, Wysocka J. 2013. Modification of enhancer chromatin: what, how, and why?. Mol. Cell 49:825–37
    [Google Scholar]
  17. 17. 
    Capecchi MR. 1980. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22:479–88
    [Google Scholar]
  18. 18. 
    Catarino RR, Stark A. 2018. Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes Dev 32:202–23
    [Google Scholar]
  19. 19. 
    Chada K, Magram J, Raphael K, Radice G, Lacy E, Costantini F 1985. Specific expression of a foreign β-globin gene in erythroid cells of transgenic mice. Nature 314:377–80
    [Google Scholar]
  20. 20. 
    Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MGM et al. 2013. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 24:777–90
    [Google Scholar]
  21. 21. 
    Chen H, Tian Y, Shu W, Bo X, Wang S 2012. Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome. PLOS ONE 7:e41374
    [Google Scholar]
  22. 22. 
    Cho W-K, Spille J-H, Hecht M, Lee C, Li C et al. 2018. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361:412–15
    [Google Scholar]
  23. 23. 
    Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM et al. 2018. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361:eaar2555
    [Google Scholar]
  24. 24. 
    Chu CS, Hellmuth JC, Singh R, Ying HY, Skrabanek L et al. 2020. Unique immune cell coactivators specify locus control region function and cell stage. Mol. Cell 80:845–61
    [Google Scholar]
  25. 25. 
    Cisse II, Izeddin I, Causse SZ, Boudarene L, Senecal A et al. 2013. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341:664–67
    [Google Scholar]
  26. 26. 
    Dao LTM, Galindo-Albarrán AO, Castro-Mondragon JA, Andrieu-Soler C, Medina-Rivera A et al. 2017. Genome-wide characterization of mammalian promoters with distal enhancer functions. Nat. Genet. 49:1073–81
    [Google Scholar]
  27. 27. 
    De Laat W, Grosveld F. 2003. Spatial organization of gene expression: the active chromatin hub. Chromosom. Res. 11:447–59
    [Google Scholar]
  28. 28. 
    de Villiers J, Schaffner W. 1981. A small segment of polyoma virus DNA enhances the expression of a cloned β-globin gene over a distance of 1400 base pairs. Nucleic Acids Res 9:6251–64
    [Google Scholar]
  29. 29. 
    Deng W, Lee J, Wang H, Miller J, Reik A et al. 2012. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149:1233–44
    [Google Scholar]
  30. 30. 
    Dillon N, Trimbom T, Strouboulis J, Fraser P, Grosveld F. 1997. The effect of distance on long-range chromatin interactions. Mol. Cell 1:131–39
    [Google Scholar]
  31. 31. 
    Doni Jayavelu N, Jajodia A, Mishra A, Hawkins RD 2020. Candidate silencer elements for the human and mouse genomes. Nat. Commun. 11:1061
    [Google Scholar]
  32. 32. 
    Dorsett D. 1999. Distant liaisons: long-range enhancer-promoter interactions in Drosophila. Curr. Opin. Genet. Dev. 9:505–14
    [Google Scholar]
  33. 33. 
    Dukler N, Gulko B, Huang Y-F, Siepel A. 2017. Is a super-enhancer greater than the sum of its parts?. Nat. Genet. 49:2–3
    [Google Scholar]
  34. 34. 
    Ellis J, Talbot D, Dillon N, Grosveld F 1993. Synthetic human β-globin 5′HS2 constructs function as locus control regions only in multicopy transgene concatamers. EMBO J 12:127–34
    [Google Scholar]
  35. 35. 
    Ellis J, Tan-Un KC, Harper A, Michalovich D, Yannoutsos N et al. 1996. A dominant chromatin-opening activity in 5′ hypersensitive site 3 of the human β-globin locus control region. EMBO J 15:562–68
    [Google Scholar]
  36. 36. 
    ENCODE Proj. Consort., Moore JE, Purcaro MJ, Pratt HE, Epstein CB et al. 2020. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583:699–710
    [Google Scholar]
  37. 37. 
    Festenstein R, Tolaini M, Corbella P, Mamalaki C, Parrington J et al. 1996. Locus control region function and heterochromatin-induced position effect variegation. Science 271:1123–25
    [Google Scholar]
  38. 38. 
    Frankel N, Davis GK, Vargas D, Wang S, Payre F, Stern DL. 2010. Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature 466:490–93
    [Google Scholar]
  39. 39. 
    Fraser P, Hurst J, Collis P, Grosveld F. 1990. DNaseI hypersensitive sites 1, 2 and 3 of the human β-globin dominant control region direct position-independent expression. Nucleic Acids Res 18:3503–8
    [Google Scholar]
  40. 40. 
    Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR et al. 2016. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354:769–73
    [Google Scholar]
  41. 41. 
    Furlong EEM, Levine M. 2018. Developmental enhancers and chromosome topology. Science 361:1341–45
    [Google Scholar]
  42. 42. 
    Gasperini M, Hill AJ, McFaline-Figueroa JL, Martin B, Kim S et al. 2019. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176:377–90.e19
    [Google Scholar]
  43. 43. 
    Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG et al. 2010. A map of open chromatin in human pancreatic islets. Nat. Genet. 42:255–59
    [Google Scholar]
  44. 44. 
    Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI et al. 2010. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330:1775–87
    [Google Scholar]
  45. 45. 
    Ghamari A, van de Corput MËPC, Thongjuea S, Van Cappellen WA, Van Ijcken W et al. 2013. In vivo live imaging of RNA polymerase II transcription factories in primary cells. Genes Dev 27:767–77
    [Google Scholar]
  46. 46. 
    Gillies SD, Morrison SL, Oi VT, Tonegawa S. 1983. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33:717–28
    [Google Scholar]
  47. 47. 
    Gisselbrecht SS, Palagi A, Kurland JV, Rogers JM, Ozadam H et al. 2020. Transcriptional silencers in Drosophila serve a dual role as transcriptional enhancers in alternate cellular contexts. Mol. Cell 77:324–37.e8
    [Google Scholar]
  48. 48. 
    Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. 1980. Genetic transformation of mouse embryos by microinjection of purified DNA. PNAS 77:7380–84
    [Google Scholar]
  49. 49. 
    Graf T, Enver T. 2009. Forcing cells to change lineages. Nature 462:587–94
    [Google Scholar]
  50. 50. 
    Grosschedl R, Birnstiel ML. 1980. Spacer DNA sequences upstream of the T-A-T-A-A-A-T-A sequence are essential for promotion of H2A histone gene transcription in vivo. PNAS 77:7102–6
    [Google Scholar]
  51. 51. 
    Grosveld F, van Assendelft GB, Greaves DR, Kollias G. 1987. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51:975–85
    [Google Scholar]
  52. 52. 
    Gruss P, Dhar R, Khoury G. 1981. Simian virus 40 tandem repeated sequences as an element of the early promoter. PNAS 78:943–47
    [Google Scholar]
  53. 53. 
    Gryder BE, Wu L, Woldemichael GM, Pomella S, Quinn TR et al. 2019. Chemical genomics reveals histone deacetylases are required for core regulatory transcription. Nat. Commun. 10:3004
    [Google Scholar]
  54. 54. 
    Gu B, Swigut T, Spencley A, Bauer MR, Chung M et al. 2018. Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359:1050–55
    [Google Scholar]
  55. 55. 
    Hah N, Benner C, Chong LW, Yu RT, Downes M, Evans RM. 2015. Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs. PNAS 112:E297–302
    [Google Scholar]
  56. 56. 
    Halfon MS. 2020. Silencers, enhancers, and the multifunctional regulatory genome. Trends Genet 36:149–51
    [Google Scholar]
  57. 57. 
    Hammer RE, Pursel VG, Rexroad CE, Wall RJ, Bolt DJ et al. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–83
    [Google Scholar]
  58. 58. 
    Hanscombe O, Whyatt D, Fraser P, Yannoutsos N, Greaves D et al. 1991. Importance of globin gene order for correct developmental expression. Genes Dev 5:1387–94
    [Google Scholar]
  59. 59. 
    Hay D, Hughes JR, Babbs C, Davies JOJ, Graham BJ et al. 2016. Genetic dissection of the α-globin super-enhancer in vivo. Nat. Genet. 48:895–903
    [Google Scholar]
  60. 60. 
    Heinz S, Romanoski CE, Benner C, Glass CK. 2015. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16:144–54
    [Google Scholar]
  61. 61. 
    Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V et al. 2013. Super-enhancers in the control of cell identity and disease. Cell 155:934–47
    [Google Scholar]
  62. 62. 
    Hnisz D, Schuijers J, Lin CY, Weintraub AS, Abraham BJ et al. 2015. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol. Cell 58:362–70
    [Google Scholar]
  63. 63. 
    Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. 2017. A phase separation model for transcriptional control. Cell 169:13–23
    [Google Scholar]
  64. 64. 
    Holehouse AS, Pappu RV. 2018. Functional implications of intracellular phase transitions. Biochemistry 57:2415–23
    [Google Scholar]
  65. 65. 
    Huang J, Li K, Cai W, Liu X, Zhang Y et al. 2018. Dissecting super-enhancer hierarchy based on chromatin interactions. Nat. Commun. 9:943
    [Google Scholar]
  66. 66. 
    Huang J, Liu X, Li D, Shao Z, Cao H et al. 2016. Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis. Dev. Cell 36:9–23
    [Google Scholar]
  67. 67. 
    Hyman AA, Weber CA, Jülicher F. 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  68. 68. 
    Ikawa Y, Miccio A, Magrin E, Kwiatkowski JL, Rivella S, Cavazzana M. 2019. Gene therapy of hemoglobinopathies: progress and future challenges. Hum. Mol. Genet. 28:R24–30
    [Google Scholar]
  69. 69. 
    Ing-Simmons E, Seitan VC, Faure AJ, Flicek P, Carroll T et al. 2015. Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin. Genome Res 25:504–13
    [Google Scholar]
  70. 70. 
    Jackson DA, Hassan AB, Errington RJ, Cook PR. 1993. Visualization of focal sites of transcription within human nuclei. EMBO J 12:1059–65
    [Google Scholar]
  71. 71. 
    Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318–56
    [Google Scholar]
  72. 72. 
    Jiang T, Raviram R, Snetkova V, Rocha PP, Proudhon C et al. 2016. Identification of multi-loci hubs from 4C-seq demonstrates the functional importance of simultaneous interactions. Nucleic Acids Res 44:8714–25
    [Google Scholar]
  73. 73. 
    Khoury G, Gruss P. 1983. Enhancer elements. Cell 33:313–14
    [Google Scholar]
  74. 74. 
    Kioussis D, Vanin E, Delange T, Flavell RA, Grosveld FG. 1983. β-Globin gene inactivation by DNA translocation in γβ-thalassaemi. Nature 306:662–66
    [Google Scholar]
  75. 75. 
    Koch F, Fenouil R, Gut M, Cauchy P, Albert TK et al. 2011. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat. Struct. Mol. Biol. 18:956–63
    [Google Scholar]
  76. 76. 
    Kollias G, Hurst J, Deboer E, Grosveld F. 1987. The human β-globin gene contains a downstream developmental specific enhancer. Nucleic Acids Res 15:5739–47
    [Google Scholar]
  77. 77. 
    Kong S, Bohl D, Li C, Tuan D. 1997. Transcription of the HS2 enhancer toward a cis-linked gene is independent of the orientation, position, and distance of the enhancer relative to the gene. Mol. Cell. Biol 17:3955–65
    [Google Scholar]
  78. 78. 
    Kowalczyk MS, Hughes JR, Garrick D, Lynch MD, Sharpe JA et al. 2012. Intragenic enhancers act as alternative promoters. Mol. Cell 45:447–58
    [Google Scholar]
  79. 79. 
    Krumlauf R, Chapman VM, Hammer RE, Brinster R, Tilghman SM. 1986. Differential expression of α-fetoprotein genes on the inactive X chromosome in extraembryonic and somatic tissues of a transgenic mouse line. Nature 319:224–26
    [Google Scholar]
  80. 80. 
    Kvon EZ, Stampfel G, Omar Yáññez-Cuna J, Dickson BJ, Stark A 2012. HOT regions function as patterned developmental enhancers and have a distinct cis-regulatory signature. Genes Dev 26:908–13
    [Google Scholar]
  81. 81. 
    Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y et al. 2018. The human transcription factors. Cell 172:650–65
    [Google Scholar]
  82. 82. 
    Lee TI, Young RA. 2013. Transcriptional regulation and its misregulation in disease. Cell 152:1237–51
    [Google Scholar]
  83. 83. 
    Lenhard B, Sandelin A, Carninci P. 2012. Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat. Rev. Genet. 13:233–45
    [Google Scholar]
  84. 84. 
    Lettice LA, Heaney SJH, Purdie LA, Li L, de Beer P et al. 2003. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12:1725–35
    [Google Scholar]
  85. 85. 
    Lettice LA, Horikoshi T, Heaney SJH, Van Baren MJ, Van Der Linde HC et al. 2002. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. PNAS 99:7548–53
    [Google Scholar]
  86. 86. 
    Li J, Hsu A, Hua Y, Wang G, Cheng L et al. 2020. Single-gene imaging links genome topology, promoter-enhancer communication and transcription control. Nat. Struct. Mol. Biol. 27:1032–40
    [Google Scholar]
  87. 87. 
    Li Q, Peterson KR, Fang X, Stamatoyannopoulos G. 2002. Locus control regions. Blood 100:3077–86
    [Google Scholar]
  88. 88. 
    Liu NQ, Maresca M, van den Brand T, Braccioli L, Schijns MMGA et al. 2020. WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation. Nat. Genet. 53:100–9
    [Google Scholar]
  89. 89. 
    Liu Z, Tjian R. 2018. Visualizing transcription factor dynamics in living cells. J. Cell Biol. 217:1181–91
    [Google Scholar]
  90. 90. 
    Long HK, Prescott SL, Wysocka J. 2016. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167:1170–87
    [Google Scholar]
  91. 91. 
    Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA et al. 2013. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153:320–34
    [Google Scholar]
  92. 92. 
    Lu Y, Wu T, Gutman O, Lu H, Zhou Q et al. 2020. Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat. Cell Biol. 22:453–64
    [Google Scholar]
  93. 93. 
    MacArthur S, Li XY, Li J, Brown JB, Cheng HC et al. 2009. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biol 10:R80
    [Google Scholar]
  94. 94. 
    Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A et al. 2014. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346:1373–77
    [Google Scholar]
  95. 95. 
    Marinić M, Aktas T, Ruf S, Spitz F. 2013. An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Dev. Cell 24:530–42
    [Google Scholar]
  96. 96. 
    McSwiggen DT, Hansen AS, Teves SS, Marie-Nelly H, Hao Y et al. 2019. Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation. eLife 8:e47098
    [Google Scholar]
  97. 97. 
    Mercola M, Wang XF, Olsen J, Calame K. 1983. Transcriptional enhancer elements in the mouse immunoglobulin heavy chain locus. Science 221:663–65
    [Google Scholar]
  98. 98. 
    Mir M, Bickmore W, Furlong EEM, Narlikar G. 2019. Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase?. Development 146:dev182766
    [Google Scholar]
  99. 99. 
    Mir M, Stadler MR, Ortiz SA, Hannon CE, Harrison MM et al. 2018. Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. eLife 7:e40497
    [Google Scholar]
  100. 100. 
    Montavon T, Soshnikova N, Mascrez B, Joye E, Thevenet L et al. 2011. A regulatory archipelago controls Hox genes transcription in digits. Cell 147:1132–45
    [Google Scholar]
  101. 101. 
    Moorman C, Sun LV, Wang J, de Wit E, Talhout W et al. 2006. Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. PNAS 103:12027–32
    [Google Scholar]
  102. 102. 
    Moreau P, Hen R, Wasylyk B, Everett R, Gaub MP, Chambon P. 1981. The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Res 9:6047–68
    [Google Scholar]
  103. 103. 
    Ngan CY, Wong CH, Tjong H, Wang W, Goldfeder RL et al. 2020. Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development. Nat. Genet. 52:264–72
    [Google Scholar]
  104. 104. 
    Nord AS, Blow MJ, Attanasio C, Akiyama JA, Holt A et al. 2013. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155:1521–31
    [Google Scholar]
  105. 105. 
    Novo CL, Javierre BM, Cairns J, Segonds-Pichon A, Wingett SW et al. 2018. Long-range enhancer interactions are prevalent in mouse embryonic stem cells and are reorganized upon pluripotent state transition. Cell Rep 22:2615–27
    [Google Scholar]
  106. 106. 
    Osterwalder M, Barozzi I, Tissiéres V, Fukuda-Yuzawa Y, Mannion BJ et al. 2018. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554:239–43
    [Google Scholar]
  107. 107. 
    Oudelaar AM, Davies JOJ, Hanssen LLP, Telenius JM, Schwessinger R et al. 2018. Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nat. Genet. 50:1744–51
    [Google Scholar]
  108. 108. 
    Oudelaar AM, Higgs DR. 2021. The relationship between genome structure and function. Nat. Rev. Genet. 22:154–68
    [Google Scholar]
  109. 109. 
    Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG et al. 1982. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611–15
    [Google Scholar]
  110. 110. 
    Palstra R-J, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W. 2003. The β-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35:190–94
    [Google Scholar]
  111. 111. 
    Pang B, Snyder MP. 2020. Systematic identification of silencers in human cells. Nat. Genet. 52:254–63
    [Google Scholar]
  112. 112. 
    Papantonis A, Cook PR. 2013. Transcription factories: genome organization and gene regulation. Chem. Rev. 113:8683–705
    [Google Scholar]
  113. 113. 
    Parker SCJ, Stitzel ML, Taylor DL, Orozco JM, Erdos MR et al. 2013. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. PNAS 110:17921–26
    [Google Scholar]
  114. 114. 
    Peeters JGC, Vervoort SJ, Tan SC, Mijnheer G, de Roock S et al. 2015. Inhibition of super-enhancer activity in autoinflammatory site-derived T cells reduces disease-associated gene expression. Cell Rep 12:1986–96
    [Google Scholar]
  115. 115. 
    Perry MW, Boettiger AN, Levine M. 2011. Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo. PNAS 108:13570–75
    [Google Scholar]
  116. 116. 
    Picard D, Schaffner W. 1984. A lymphocyte-specific enhancer in the mouse immunoglobulin κ gene. Nature 307:80–82
    [Google Scholar]
  117. 117. 
    Plank JL, Dean A. 2014. Enhancer function: mechanistic and genome-wide insights come together. Mol. Cell 55:5–14
    [Google Scholar]
  118. 118. 
    Pott S, Lieb JD. 2015. What are super-enhancers?. Nat. Genet. 47:8–12
    [Google Scholar]
  119. 119. 
    Proudhon C, Snetkova V, Raviram R, Lobry C, Badri S et al. 2016. Active and inactive enhancers cooperate to exert localized and long-range control of gene regulation. Cell Rep 15:2159–69
    [Google Scholar]
  120. 120. 
    Queen C, Baltimore D. 1983. Immunoglobulin gene transcription is activated by downstream sequence elements. Cell 33:741–48
    [Google Scholar]
  121. 121. 
    Ragoczy T, Bender MA, Telling A, Byron R, Groudine M. 2006. The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 20:1447–57
    [Google Scholar]
  122. 122. 
    Rahman S, Sowa ME, Ottinger M, Smith JA, Shi Y et al. 2011. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol. Cell. Biol 31:2641–52
    [Google Scholar]
  123. 123. 
    Rao SSP, Huang SC, St Hilaire BG, Engreitz JM, Perez EM et al. 2017. Cohesin loss eliminates all loop domains. Cell 171:305–20.e24
    [Google Scholar]
  124. 124. 
    Rhodes JDP, Feldmann A, Hernández-Rodríguez B, Díaz N, Brown JM et al. 2020. Cohesin disrupts Polycomb-dependent chromosome interactions in embryonic stem cells. Cell Rep 30:820–35.e10
    [Google Scholar]
  125. 125. 
    Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL et al. 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361:eaar3958
    [Google Scholar]
  126. 126. 
    Sadelain M, Wang CHJ, Antoniou M, Grosveld F, Mulligan RC. 1995. Generation of a high-titer retroviral vector capable of expressing high levels of the human β-globin gene. PNAS 92:6728–32
    [Google Scholar]
  127. 127. 
    Sagai T, Hosoya M, Mizushina Y, Tamura M, Shiroishi T. 2005. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 132:797–803
    [Google Scholar]
  128. 128. 
    Sansó M, Fisher RP. 2013. Pause, play, repeat. Transcription 4:146–52
    [Google Scholar]
  129. 129. 
    Schoenfelder S, Fraser P. 2019. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20:437–55
    [Google Scholar]
  130. 130. 
    Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A et al. 2010. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42:53–61
    [Google Scholar]
  131. 131. 
    Sengupta S, George RE. 2017. Super-enhancer-driven transcriptional dependencies in cancer. Trends Cancer 3:269–81
    [Google Scholar]
  132. 132. 
    Serfling E, Jasin M, Schaffner W. 1985. Enhancers and eukaryotic gene transcription. Trends Genet 1:224–30
    [Google Scholar]
  133. 133. 
    Shin HY, Willi M, Yoo KH, Zeng X, Wang C et al. 2016. Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat. Genet. 48:904–11
    [Google Scholar]
  134. 134. 
    Stadhouders R, Filion GJ, Graf T. 2019. Transcription factors and 3D genome conformation in cell-fate decisions. Nature 569:345–54
    [Google Scholar]
  135. 135. 
    Stadhouders R, Li BWS, de Bruijn MJW, Gomez A, Rao TN et al. 2018. Epigenome analysis links gene regulatory elements in group 2 innate lymphocytes to asthma susceptibility. J. Allergy Clin. Immunol. 142:1793–807
    [Google Scholar]
  136. 136. 
    Stadhouders R, Thongjuea S, Andrieu-Soler C, Palstra RJ, Bryne JC et al. 2012. Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J 31:986–99
    [Google Scholar]
  137. 137. 
    Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil J-A et al. 2018. Gene therapy in patients with transfusion-dependent β-thalassemia. N. Engl. J. Med. 378:1479–93
    [Google Scholar]
  138. 138. 
    Townes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD. 1985. Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO J 4:1715–23
    [Google Scholar]
  139. 139. 
    Tuan D, Solomon W, Li Q, London IM. 1985. The “β-like-globin” gene domain in human erythroid cells. PNAS 82:6384–88
    [Google Scholar]
  140. 140. 
    Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. 2009. A census of human transcription factors: function, expression and evolution. Nat. Rev. Genet. 10:252–63
    [Google Scholar]
  141. 141. 
    Voss TC, Hager GL. 2014. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat. Rev. Genet. 15:69–81
    [Google Scholar]
  142. 142. 
    Wang X, Cairns MJ, Yan J 2019. Super-enhancers in transcriptional regulation and genome organization. Nucleic Acids Res 47:11481–96
    [Google Scholar]
  143. 143. 
    Wansink DG, Schul W, Van der Kraan I, Van Steensel B, Van Driel R, De Jong L. 1993. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J. Cell Biol. 122:283–93
    [Google Scholar]
  144. 144. 
    Whyatt D, Lindeboom F, Karls A, Farreira R, Milot E et al. 2000. An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Nature 406:519–24
    [Google Scholar]
  145. 145. 
    Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY et al. 2013. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–19
    [Google Scholar]
  146. 146. 
    Zhang H, Emerson DJ, Gilgenast TG, Titus KR, Lan Y et al. 2019. Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature 576:158–62
    [Google Scholar]
/content/journals/10.1146/annurev-genom-122220-093818
Loading
/content/journals/10.1146/annurev-genom-122220-093818
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error