1932

Abstract

The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis—a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell–cell communication within the reproductive tissues.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-080620-021907
2021-06-17
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/arplant/72/1/annurev-arplant-080620-021907.html?itemId=/content/journals/10.1146/annurev-arplant-080620-021907&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD. 2020. Fertilization in flowering plants: an odyssey of sperm cell delivery. Plant Mol. Biol. 103:9–32
    [Google Scholar]
  2. 2. 
    Ariizumi T, Toriyama K. 2011. Genetic regulation of sporopollenin synthesis and pollen exine development. Annu. Rev. Plant Biol. 62:437–60
    [Google Scholar]
  3. 3. 
    Bai B, van der Horst S, Cordewener JHG, America TAHP, Hanson J, Bentsink L. 2020. Seed-stored mRNAs that are specifically associated to monosomes are translationally regulated during germination. Plant Physiol 182:378–92
    [Google Scholar]
  4. 4
    Bai B, van der Horst S, Delhomme N, Robles AV, Bentsink L, Hanson J. 2019. Transcriptome and translatome profiling and translational network analysis during seed maturation reveals conserved transcriptional and distinct translational regulatory patterns. bioRxiv 778001. https://doi.org/10.1101/778001
  5. 5. 
    Basbouss-Serhal I, Soubigou-Taconnat L, Bailly C, Leymarie J. 2015. Germination potential of dormant and nondormant Arabidopsis seeds is driven by distinct recruitment of messenger RNAs to polysomes. Plant Physiol 168:1049–65
    [Google Scholar]
  6. 6. 
    Bateman RM, DiMichelle WA. 1994. Heterospory: the most iterative key innovation in the evolutionary history of the plant kingdom. Biol. Rev. 69:345–417
    [Google Scholar]
  7. 7. 
    Beale KM, Leydon AR, Johnson MA. 2012. Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule. Curr. Biol. 22:1090–94
    [Google Scholar]
  8. 8. 
    Berger F, Twell D. 2011. Germline specification and function in plants. Annu. Rev. Plant Biol. 62:461–84
    [Google Scholar]
  9. 9. 
    Biever A, Glock C, Tushev G, Ciirdaeva E, Dalmay T et al. 2020. Monosomes actively translate synaptic mRNAs in neuronal processes. Science 367:eaay4991
    [Google Scholar]
  10. 10. 
    Bloch D, Pleskot R, Pejchar P, Potocký M, Trpkošová P et al. 2016. Exocyst SEC3 and phosphoinositides define sites of exocytosis in pollen tube initiation and growth. Plant Physiol 172:980–1002
    [Google Scholar]
  11. 11. 
    Boehm T. 2006. Quality control in self/nonself discrimination. Cell 125:845–58
    [Google Scholar]
  12. 12. 
    Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M et al. 2009. Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136:3279–88
    [Google Scholar]
  13. 13. 
    Bokvaj P, Hafidh S, Honys D. 2015. Transcriptome profiling of male gametophyte development in Nicotiana tabacum. Genom. Data 3:106–11
    [Google Scholar]
  14. 14. 
    Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D. 2011. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23:534–49
    [Google Scholar]
  15. 15. 
    Borg M, Jacob Y, Susaki D, LeBlanc C, Buendia D et al. 2020. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nat. Cell Biol. 22:621–29The authors show that the Arabidopsis male germline resets its epigenetic memory by a specific H3K27me3 removal from histone-based sperm chromatin.
    [Google Scholar]
  16. 16. 
    Borg M, Rutley N, Kagale S, Hamamura Y, Gherghinoiu M et al. 2014. An EAR-dependent regulatory module promotes male germ cell division and sperm fertility in Arabidopsis. Plant Cell 26:2098–113
    [Google Scholar]
  17. 17. 
    Brewbaker JL. 1967. Distribution and phylogenetic significance of binucleate and trinucleate pollen grains in angiosperms. Am. J. Bot. 54:1069–83
    [Google Scholar]
  18. 18. 
    Brownfield L, Hafidh S, Borg M, Sidorova A, Mori T, Twell D. 2009. A plant germline-specific integrator of sperm specification and cell cycle progression. PLOS Genet 5:e1000430
    [Google Scholar]
  19. 19. 
    Burri JT, Vogler H, Läubli NF, Hu C, Grossniklaus U, Nelson BJ. 2018. Feeling the force: how pollen tubes deal with obstacles. New Phytol 220:187–95
    [Google Scholar]
  20. 20. 
    Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE et al. 2012. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205
    [Google Scholar]
  21. 21. 
    Camacho L, Malho R. 2003. Endo/exocytosis in the pollen tube apex is differentially regulated by Ca2+ and GTPases. J. Exp. Bot. 54:83–92
    [Google Scholar]
  22. 22
    Camerarius RJ.1899 1694. Ueber das Geschlecht der Pflanzen. (De sexu plantarum epistola Leipzig, Ger: W. Engelmann
    [Google Scholar]
  23. 23. 
    Čelakovský FL. 1874. Über die verschiedenen Formen und die Bedeutung des Generationswechsels der Pflanzen. Sitzungsberichte k. Böhm. Ges. Wiss. Prag 2:21–61
    [Google Scholar]
  24. 24. 
    Chantarachot T, Bailey-Serres J. 2017. Polysomes, stress granules and processing bodies: a dynamic triumvirate controlling cytoplasmic mRNA fate and function. Plant Physiol 176:254–69
    [Google Scholar]
  25. 25. 
    Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS et al.Angiosperm Phylogeny Group 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linnean Soc 181:1–20
    [Google Scholar]
  26. 26. 
    Chaturvedi P, Ischebeck T, Egelhofer V, Lichtscheidl I, Weckwerth W. 2013. Cell-specific analysis of the tomato pollen proteome from pollen mother cell to mature pollen provides evidence for developmental priming. J. Proteome Res. 12:4892–903
    [Google Scholar]
  27. 27. 
    Chebli Y, Geitmann A. 2007. Mechanical principles governing pollen tube growth. Funct. Plant Sci. Biotechnol. 1:232–45
    [Google Scholar]
  28. 28. 
    Chehab EW, Eich E, Braam J. 2009. Thigmomorphogenesis: a complex plant response to mechano-stimulation. J. Exp. Bot. 60:43–56
    [Google Scholar]
  29. 29. 
    Chen L-Y, Shi D-Q, Zhang W-J, Tang Z-S, Liu J, Yang W-C. 2015. The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells. Nat. Commun. 6:6030
    [Google Scholar]
  30. 30. 
    Chen Y-H, Li H-J, Shi D-Q, Yuan L, Liu J et al. 2007. The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19:3563–77
    [Google Scholar]
  31. 31. 
    Chen Z, Hafidh S, Poh SH, Twell D, Berger F 2009. Proliferation and cell fate establishment during Arabidopsis male gametogenesis depends on the Retinoblastoma protein. PNAS 106:7257–62
    [Google Scholar]
  32. 32. 
    Cheung AY, Wang H, Wu H-M. 1995. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–93
    [Google Scholar]
  33. 33. 
    Clark T. 2018. HAP2/GCS1: Mounting evidence of our true biological EVE?. PLOS Biol 16:e3000007
    [Google Scholar]
  34. 34. 
    Crawford BCW, Yanofsky MF. 2011. HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development 138:2999–3009
    [Google Scholar]
  35. 35. 
    Cyprys P, Lindemeier M, Sprunck S. 2019. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nat. Plants 5:253–57
    [Google Scholar]
  36. 36. 
    Darwin C, Darwin F 1881. 1892. The Power of Movement in Plants New York: D. Appleton Co.
  37. 37. 
    De Storme N, Geelen D. 2013. Cytokinesis in plant male meiosis. Plant Signal. Behav. 8:e23394
    [Google Scholar]
  38. 38. 
    Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T et al. 2014. Male–female communication triggers calcium signatures during fertilization in Arabidopsis. Nat. Commun. 5:4645
    [Google Scholar]
  39. 39. 
    Dickinson HG, Heslop-Harrison J. 1977. Ribosomes, membranes and organelles during meiosis in angiosperms. Philos. Trans. R. Soc. Lond. B 277:327–42
    [Google Scholar]
  40. 40. 
    Dobritsa AA, Kirkpatrick AB, Reeder SH, Li P, Owen HA 2018. Pollen aperture factor INP1 acts late in aperture formation by excluding specific membrane domains from exine deposition. Plant Physiol 176:326–39
    [Google Scholar]
  41. 41. 
    Doucet J, Lee HK, Goring DR. 2016. Pollen acceptance or rejection: a tale of two pathways. Trends Plant Sci 21:1058–67
    [Google Scholar]
  42. 42. 
    Dresselhaus T, Franklin-Tong N. 2013. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol. Plant 6:1018–36
    [Google Scholar]
  43. 43. 
    Duan Q, Liu MJ, Kita D, Jordan SS, Yeh FJ et al. 2020. FERONIA controls pectin- and nitric oxide-mediated male–female interaction. Nature 579:561–66
    [Google Scholar]
  44. 44. 
    Eady C, Lindsey K, Twell D. 1995. The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell 7:65–74
    [Google Scholar]
  45. 45. 
    Elfving F. 1879. Studien über die Pollenkörner der Angiospermen. Jena. Z. Naturwiss. 13:1–28
    [Google Scholar]
  46. 46. 
    Engel ML, Holmes-Davis R, McCormick S. 2005. Green sperm. Identification of male gamete promoters in Arabidopsis. Plant Physiol 138:2124–33
    [Google Scholar]
  47. 47. 
    Escobar-Restrepo J-M, Huck N, Kessler S, Gagliardini V, Gheyselinck J et al. 2007. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–60
    [Google Scholar]
  48. 48. 
    Fedry J, Forcina J, Legrand P, Pehau-Arnaudet G, Haouz A et al. 2018. Evolutionary diversification of the HAP2 membrane insertion motifs to drive gamete fusion across eukaryotes. PLOS Biol 16:e2006357Dissects the structural module of an evolutionarily conserved fusogen protein responsible for gamete fusion in flowering plants.
    [Google Scholar]
  49. 49. 
    Feijo JA, Costa SS, Prado AM, Becker JD, Certal AC. 2004. Signalling by tips. Curr. Opin. Plant Biol. 7:589–98
    [Google Scholar]
  50. 50. 
    Fernando DD, Quinn CR, Brenner ED, Owens JN. 2010. Male gametophyte development and evolution in extant gymnosperms. Int. J. Plant Dev. Biol. 4:47–63
    [Google Scholar]
  51. 51. 
    Fíla J, Radau S, Matros A, Hartmann A, Scholz U et al. 2016. Phosphoproteomics profiling of tobacco mature pollen and pollen activated in vitro. Mol. Cell Proteom. 15:1338–50
    [Google Scholar]
  52. 52
    Fíla J, Záveská Drábková L, Gibalová A, Honys D 2017. When simple meets complex: pollen and the -omics. Pollen Tip Growth G Obermeyer, J Feijó 247–92 Cham, Switz: Springer
    [Google Scholar]
  53. 53. 
    Flores-Tornero M, Proost S, Mutwil M, Scutt CP, Dresselhaus T, Sprunck S. 2019. Transcriptomics of manually isolated Amborella trichopoda egg apparatus cells. Plant Reprod. 32:15–27
    [Google Scholar]
  54. 54. 
    Fujii S, Tsuchimatsu T, Kimura Y, Ishida S, Tangpranomkorn S et al. 2019. A stigmatic gene confers interspecies incompatibility in the Brassicaceae. Nat. Plants 5:731–41
    [Google Scholar]
  55. 55. 
    Funk H. 2013. Adam Zalužanský’s “De sexu plantarum” (1592): an early pioneering chapter on plant sexuality. Arch. Nat. Hist. 40:244–56
    [Google Scholar]
  56. 56. 
    Ge Z, Bergonci T, Zhao Y, Zou Y, Du S et al. 2017. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358:1596–600The study provides evidence for the autocrine regulation of pollen tube integrity and a synergid cell trigger of sperm cells release.
    [Google Scholar]
  57. 57. 
    Ge Z, Cheung AY, Qu L-J. 2019. Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface. New Phytol 222:687–93
    [Google Scholar]
  58. 58. 
    Gehring M. 2019. Epigenetic dynamics during flowering plant reproduction: evidence for reprogramming?. New Phytol 224:91–96
    [Google Scholar]
  59. 59. 
    Gibalová A, Reňák D, Matczuk K, Dupl'áková N, Cháb D et al. 2009. AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol. Biol. 70:581–601
    [Google Scholar]
  60. 60. 
    Guan Y, Lu J, Xu J, McClure B, Zhang S. 2014. Two mitogen-activated protein kinases, MPK3 and MPK6, are required for funicular guidance of pollen tubes in Arabidopsis. Plant Physiol 165:528–33
    [Google Scholar]
  61. 61. 
    Gusti A, Baumberger N, Nowack M, Pusch S, Eisler H et al. 2009. The Arabidopsis thaliana F-box protein FBL17 is essential for progression through the second mitosis during pollen development. PLOS ONE 4:e4780
    [Google Scholar]
  62. 62. 
    Gutzat R, Borghi L, Gruissem W. 2012. Emerging roles of RETINOBLASTOMA-RELATED proteins in evolution and plant development. Trends Plant Sci 17:139–48
    [Google Scholar]
  63. 63. 
    Hackenberg D, Twell D. 2019. The evolution and patterning of male gametophyte development. Curr. Top. Dev. Biol. 131:257–98
    [Google Scholar]
  64. 64. 
    Hafidh S, Capkova V, Honys D. 2011. Safe keeping the message: mRNP complexes tweaking after transcription. Adv. Exp. Med. Biol. 722:118–36
    [Google Scholar]
  65. 65. 
    Hafidh S, Fila J, Honys D. 2016. Male gametophyte development and function in angiosperms: a general concept. Plant Reprod 29:31–51
    [Google Scholar]
  66. 66. 
    Hafidh S, Honys D. 2020. Isolation of the pistil-stimulated pollen tube secretome. Methods Mol. Biol. 2160:41–72
    [Google Scholar]
  67. 67. 
    Hafidh S, Potesil D, Fila J, Capkova V, Zdrahal Z, Honys D. 2016. Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol 17:81
    [Google Scholar]
  68. 68. 
    Hafidh S, Potesil D, Müller K, Fila J, Michailidis C et al. 2018. Dynamics of the pollen sequestrome defined by subcellular coupled omics. Plant Physiol 178:258–82
    [Google Scholar]
  69. 69. 
    Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A et al. 2011. Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr. Biol. 21:497–502
    [Google Scholar]
  70. 70. 
    Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR. 2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–11
    [Google Scholar]
  71. 71. 
    Hater F, Nakel T, Groß-Hardt R. 2020. Reproductive multitasking: the female gametophyte. Annu. Rev. Plant Biol. 71:517–46
    [Google Scholar]
  72. 72. 
    Higo A, Kawashima T, Borg M, Zhao M, Lopez-Vidriero I et al. 2018. Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nat. Commun. 9:5283
    [Google Scholar]
  73. 73. 
    Hisanaga T, Yamaoka S, Kawashima T, Higo A, Nakajima K et al. 2019. Building new insights in plant gametogenesis from an evolutionary perspective. Nat. Plants 5:663–69
    [Google Scholar]
  74. 74. 
    Hiscock SJ, McInnis SM. 2003. Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. Trends Plant Sci 8:606–13 Corrigendum. 2004. Trends Plant Sci. 9:64
    [Google Scholar]
  75. 75
    Hofmeister W. 1851. Vergleichende Untersuchungen der Keimung, Entfaltung und Fruchtbildung höherer Kryptogamen (Moose, Farrn, Equisetaceen, Rhizocarpeen und Lycopodiaceen) und der Samenbildung der Coniferen Leipzig, Ger: F. Hofmeister
  76. 76. 
    Honys D, Combe JP, Twell D, Čapková V. 2000. The translationally repressed pollen-specific ntp303 mRNA is stored in non-polysomal mRNPs during pollen maturation. Sex. Plant Reprod. 13:135–44
    [Google Scholar]
  77. 77. 
    Honys D, Renak D, Fecikova J, Jedelsky PL, Nebesarova J et al. 2009. Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J. Proteome Res. 8:2015–31
    [Google Scholar]
  78. 78
    Honys D, Reňák D, Twell D. 2006. Male gametophyte development and function. Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues JA Teixeira da Silva 76–87 London: Global Science Books
    [Google Scholar]
  79. 79. 
    Honys D, Twell D. 2004. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85The first demonstration of pollen transcriptome dynamics throughout male gametophyte development.
    [Google Scholar]
  80. 80. 
    Huang J, Ju Y, Wang X, Zhang QSodmergen 2015. A one-step rectification of sperm cell targeting ensures the success of double fertilization. J. Integr. Plant Biol. 57:496–503
    [Google Scholar]
  81. 81. 
    Huck N, Moore JM, Federer M, Grossniklaus U. 2003. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–59
    [Google Scholar]
  82. 82. 
    Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R et al. 2012. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–64
    [Google Scholar]
  83. 83. 
    Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M et al. 2014. Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol. Cell Proteom. 13:295–310
    [Google Scholar]
  84. 84. 
    Iwano M, Shiba H, Miwa T, Che FS, Takayama S et al. 2004. Ca2+ dynamics in a pollen grain and papilla cell during pollination of Arabidopsis. Plant Physiol 136:3562–71
    [Google Scholar]
  85. 85. 
    Jiang J, Zhang Z, Cao J. 2013. Pollen wall development: the associated enzymes and metabolic pathways. Plant Biol 15:249–63
    [Google Scholar]
  86. 86. 
    Johnson MA, Harper JF, Palanivelu R. 2019. A fruitful journey: pollen tube navigation from germination to fertilization. Annu. Rev. Plant Biol. 70:809–37This review provides comprehensive insight into the mechanisms and players of cell–cell communication leading to sperm cell delivery.
    [Google Scholar]
  87. 87. 
    Kasahara RD, Maruyama D, Hamamura Y, Sakakibara T, Twell D, Higashiyama T. 2012. Fertilization recovery after defective sperm cell release in Arabidopsis. Curr. Biol. 22:1084–89
    [Google Scholar]
  88. 88. 
    Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN. 2005. MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–92
    [Google Scholar]
  89. 89. 
    Kenrick P, Crane PR. 1997. The origin and early evolution of plants on land. Nature 389:33–39
    [Google Scholar]
  90. 90. 
    Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G et al. 2010. Conserved molecular components for pollen tube reception and fungal invasion. Science 330:968–71
    [Google Scholar]
  91. 91. 
    Kim HJ, Oh SA, Brownfield L, Hong SH, Ryu H et al. 2008. Control of plant germline proliferation by SCFFBL17 degradation of cell cycle inhibitors. Nature 455:1134–37
    [Google Scholar]
  92. 92. 
    Koi S, Hisanaga T, Sato K, Shimamura M, Yamato KT et al. 2016. An evolutionarily conserved plant RKD factor controls germ cell differentiation. Curr. Biol. 26:1775–81
    [Google Scholar]
  93. 93. 
    Koppers M, Cagnetta R, Shigeoka T, Wunderlich LCS, Vallejo-Ramirez P et al. 2019. Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons. eLife 8:e48718
    [Google Scholar]
  94. 94. 
    Koszegi D, Johnston AJ, Rutten T, Czihal A, Altschmied L et al. 2011. Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J 67:280–91
    [Google Scholar]
  95. 95. 
    Kulichová K, Kumar V, Steinbachová L, Klodová B, Timofejeva L et al. 2020. PRP8A and PRP8B spliceosome subunits act coordinately to control pollen tube attraction in Arabidopsis thaliana. Development 147:dev186742
    [Google Scholar]
  96. 96. 
    Labandeira CC, Kvaček J, Mostovski MB. 2007. Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon 56:663–95
    [Google Scholar]
  97. 97. 
    Lalanne E, Twell D. 2002. Genetic control of male germ unit organization in Arabidopsis. Plant Physiol 129:865–75
    [Google Scholar]
  98. 98. 
    Lancelle SA, Hepler KP. 1992. Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma 167:215–30
    [Google Scholar]
  99. 99. 
    Lee BH, Weber ZT, Zourelidou M, Hofmeister BT, Schmitz RJ et al. 2018. Arabidopsis protein kinase D6PKL3 is involved in the formation of distinct plasma membrane aperture domains on the pollen surface. Plant Cell 30:2038–56
    [Google Scholar]
  100. 100. 
    Lee YR, Li Y, Liu B. 2007. Two Arabidopsis phragmoplast-associated kinesins play a critical role in cytokinesis during male gametogenesis. Plant Cell 19:2595–605
    [Google Scholar]
  101. 101. 
    Leydon AR, Weinreb C, Venable E, Reinders A, Ward JM, Johnson MA. 2017. The molecular dialog between flowering plant reproductive partners defined by SNP-informed RNA-sequencing. Plant Cell 29:984–1006
    [Google Scholar]
  102. 102. 
    Li C, Wu HM, Cheung AY. 2016. FERONIA and her pals: functions and mechanisms. Plant Physiol 171:2379–92
    [Google Scholar]
  103. 103. 
    Li C, Yeh FL, Cheung AY, Duan Q, Kita D et al. 2015. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 4:e06587
    [Google Scholar]
  104. 104. 
    Li FS, Phyo P, Jacobowitz J, Hong M, Weng JK. 2019. The molecular structure of plant sporopollenin. Nat. Plants 5:41–46
    [Google Scholar]
  105. 105. 
    Li H-J, Zhu S-S, Zhang M-X, Wang T, Liang L et al. 2015. Arabidopsis CBP1 is a novel regulator of transcription initiation in central cell-mediated pollen tube guidance. Plant Cell 27:2880–93
    [Google Scholar]
  106. 106. 
    Li S, Gu Y, Yan A, Lord E, Yang Z-B. 2008. RIP1 (ROP Interactive Partner 1)/ICR1 marks pollen germination sites and may act in the ROP1 pathway in the control of polarized pollen growth. Mol. Plant 1:1021–35
    [Google Scholar]
  107. 107. 
    Li Y, Tan X, Wang M, Li B, Zhao Y et al. 2017. Exocyst subunit SEC3A marks the germination site and is essential for pollen germination in Arabidopsis thaliana. Sci. Rep. 7:40279
    [Google Scholar]
  108. 108. 
    Liang X, Zhou J-M. 2018. The secret of fertilization in flowering plants unveiled. Sci. Bull. 63:408–10
    [Google Scholar]
  109. 109. 
    Liang Y, Tan Z-M, Zhu L, Niu Q-K, Zhou J-J et al. 2013. MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization. PLOS Genet 9:e1003933
    [Google Scholar]
  110. 110. 
    Lin S-Y, Chen P-W, Chuang M-H, Juntawong P, Bailey-Serres J, Jauh G-Y. 2014. Profiling of translatomes of in vivo–grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. Plant Cell 26:602–18
    [Google Scholar]
  111. 111. 
    Lopes AL, Moreira D, Ferreira MJ, Pereira AM, Coimbra S. 2019. Insights into secrets along the pollen tube pathway in need to be discovered. J. Exp. Bot. 70:2979–92
    [Google Scholar]
  112. 112. 
    Lora J, Herrero M, Hormaza JI. 2009. The coexistence of bicellular and tricellular pollen in Annona cherimola (Annonaceae): implications for pollen evolution. Am. J. Bot. 96:802–8
    [Google Scholar]
  113. 113. 
    Lora J, Herrero M, Hormaza JI. 2012. Pollen performance, cell number, and physiological state in the early-divergent angiosperm Annona cherimola Mill. (Annonaceae) are related to environmental conditions during the final stages of pollen development. Sex. Plant Reprod. 25:157–67
    [Google Scholar]
  114. 114. 
    Malpighi M. 1901. 1675. 1679. Die Anatomie der Pflanzen: I. und II. Theil Leipzig, Ger: Engelmann
  115. 115. 
    Martínez G, Panda K, Köhler C, Slotkin RK. 2016. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat. Plants 2:16030
    [Google Scholar]
  116. 116. 
    Mattioli R, Biancucci M, El Shall A, Mosca L, Costantino P et al. 2018. Proline synthesis in developing microspores is required for pollen development and fertility. BMC Plant Biol 18:356
    [Google Scholar]
  117. 117. 
    McCue AD, Cresti M, Feijo JA, Slotkin RK. 2011. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited. J. Exp. Bot. 62:1621–31
    [Google Scholar]
  118. 118. 
    Merret R, Carpentier MC, Favory JJ, Picart C, Descombin J et al. 2017. Heat shock protein HSP101 affects the release of ribosomal protein mRNAs for recovery after heat shock. Plant Physiol 174:1216–25
    [Google Scholar]
  119. 119. 
    Merret R, Nagarajan VK, Carpentier M-C, Park S, Favory J-J et al. 2015. Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana. Nucleic Acids Res 43:4121–32
    [Google Scholar]
  120. 120. 
    Michard E, Alves F, Feijo JA. 2009. The role of ion fluxes in polarized cell growth and morphogenesis: the pollen tube as an experimental paradigm. Int. J. Dev. Biol. 53:1609–22
    [Google Scholar]
  121. 121. 
    Michard E, Lima PT, Borges F, Silva AC, Portes MT et al. 2011. Glutamate receptor–like genes form Ca2+ channels in pollen tubes and are regulated by pistil d-serine. Science 332:434–37
    [Google Scholar]
  122. 122. 
    Mikhael A, Jurcic K, Schneider C, Karr D, Fisher GL et al. 2020. Demystifying and unravelling the molecular structure of the biopolymer sporopollenin. Rapid Commun. Mass Spectrom. 34:e8740
    [Google Scholar]
  123. 123. 
    Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T et al. 2009. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr. Biol. 19:1327–31
    [Google Scholar]
  124. 124. 
    Mizuta Y, Higashiyama T. 2018. Chemical signaling for pollen tube guidance at a glance. J. Cell Sci. 131:jcs208447
    [Google Scholar]
  125. 125. 
    Mollet JC, Park SY, Nothnagel EA, Lord EM. 2000. A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:1737–50
    [Google Scholar]
  126. 126. 
    Mondol PC, Xu D, Duan L, Shi J, Wang C et al. 2020. Defective Pollen Wall 3 (DPW3), a novel alpha integrin-like protein, is required for pollen wall formation in rice. New Phytol 225:807–22
    [Google Scholar]
  127. 127. 
    Mori T, Igawa T, Tamiya G, SY Miyagishima, Berger F. 2014. Gamete attachment requires GEX2 for successful fertilization in Arabidopsis. Curr. Biol. 24:170–75
    [Google Scholar]
  128. 128. 
    Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T. 2006. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat. Cell Biol. 8:64–71
    [Google Scholar]
  129. 129. 
    Nakamura M, Kohler C, Hennig L. 2019. Tissue-specific transposon-associated small RNAs in the gymnosperm tree, Norway spruce. BMC Genom 20:997
    [Google Scholar]
  130. 130. 
    Nakel T, Tekleyohans DG, Mao Y, Fuchert G, Vo D, Groß-Hardt R. 2017. Triparental plants provide direct evidence for polyspermy induced polyploidy. Nat. Commun. 8:1033
    [Google Scholar]
  131. 131. 
    Nawaschin S. 1898. Resultate einer Revision der Befruchtungsvorgänge bei Lilium martagon und Fritillaria tenella. Bull. l'Acad. Impériale Sci. 9:377–82
    [Google Scholar]
  132. 132. 
    Nelms B, Walbot V. 2019. Defining the developmental program leading to meiosis in maize. Science 364:52–56
    [Google Scholar]
  133. 133. 
    Nepi M, Little S, Guarnieri M, Nocentini D, Prior N et al. 2017. Phylogenetic and functional signals in gymnosperm ovular secretions. Ann. Bot. 120:923–36
    [Google Scholar]
  134. 134. 
    Noir S, Marrocco K, Masoud K, Thomann A, Gusti A et al. 2015. The control of Arabidopsis thaliana growth by cell proliferation and endoreplication requires the F-box protein FBL17. Plant Cell 27:1461–76
    [Google Scholar]
  135. 135. 
    Oh SA, Allen T, Kim GJ, Sidorova A, Borg M et al. 2012. Arabidopsis Fused kinase and the Kinesin-12 subfamily constitute a signalling module required for phragmoplast expansion. Plant J 72:308–19
    [Google Scholar]
  136. 136. 
    Oh SA, Bourdon V, Das 'Pal M, Dickinson H, Twell D. 2008. Arabidopsis kinesins HINKEL and TETRASPORE act redundantly to control cell plate expansion during cytokinesis in the male gametophyte. Mol. Plant 1:794–99
    [Google Scholar]
  137. 137. 
    Oh SA, Hoai TNT, Park HJ, Zhao M, Twell D et al. 2020. MYB81, a microspore-specific GAMYB transcription factor, promotes pollen mitosis I and cell lineage formation in Arabidopsis. Plant J 101:590–603
    [Google Scholar]
  138. 138. 
    Oh SA, Jeon J, Park HJ, Grini PE, Twell D, Park SK. 2016. Analysis of gemini pollen 3 mutant suggests a broad function of AUGMIN in microtubule organization during sexual reproduction in Arabidopsis. Plant J 87:188–201
    [Google Scholar]
  139. 139. 
    Oh SA, Johnson A, Smertenko A, Rahman D, Park SK et al. 2005. A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Curr. Biol. 15:2107–11
    [Google Scholar]
  140. 140. 
    Oh SA, Park KS, Twell D, Park SK. 2010. The SIDECAR POLLEN gene encodes a microspore-specific LOB/AS2 domain protein required for the correct timing and orientation of asymmetric cell division. Plant J 64:839–50
    [Google Scholar]
  141. 141. 
    Okada T, Endo M, Singh MB, Bhalla PL. 2005. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. Plant J 44:557–68
    [Google Scholar]
  142. 142. 
    Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H et al. 2009. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–61Provides initial evidence of secreted diffusible signals for pollen tube attraction.
    [Google Scholar]
  143. 143. 
    Onelli E, Idilli AI, Moscatelli A. 2015. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. Front. Plant Sci. 6:51
    [Google Scholar]
  144. 144. 
    Pacini E. 2012. Pollen and seed analogies. Plant Biosyst 146:738–48
    [Google Scholar]
  145. 145. 
    Pacini E, Guarnieri M, Nepi M. 2006. Pollen carbohydrates and water content during development, presentation, and dispersal: a short review. Protoplasma 228:73–77
    [Google Scholar]
  146. 146. 
    Palanivelu R, Brass L, Edlund AF, Preuss D. 2003. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59
    [Google Scholar]
  147. 147. 
    Palanivelu R, Preuss D. 2000. Pollen tube targeting and axon guidance: parallels in tip growth mechanisms. Trends Cell Biol 10:517–24
    [Google Scholar]
  148. 148. 
    Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA et al. 2000. A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:151–63
    [Google Scholar]
  149. 149. 
    Pereira AM, Nobre MS, Pinto SC, Lopes AL, Costa ML et al. 2016.. “ Love is strong, and you're so sweet”: JAGGER is essential for persistent synergid degeneration and polytubey block in Arabidopsis thaliana. Mol. Plant 9:601–14
    [Google Scholar]
  150. 150. 
    Pereira PA, Boavida LC, Santos MR, Becker JD. 2020. AtNOT1 is required for gametophyte development in Arabidopsis. Plant J 103:1298–303
    [Google Scholar]
  151. 151. 
    Pérez Di Giorgio JA, Barberini ML, Amodeo G, Muschietti JP 2016. Pollen aquaporins: What are they there for?. Plant Signal. Behav. 11:e1217375
    [Google Scholar]
  152. 152. 
    Petersen KB, Burd M. 2017. Why did heterospory evolve?. Biol. Rev. Camb. Philos. Soc. 92:1739–54
    [Google Scholar]
  153. 153. 
    Petersen KB, Burd M. 2018. The adaptive value of heterospory: evidence from Selaginella. Evolution 72:1080–91
    [Google Scholar]
  154. 154. 
    Phan HA, Iacuone S, Li SF, Parish RW. 2011. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23:2209–24
    [Google Scholar]
  155. 155. 
    Preuss D, Lemieux B, Yen G, Davis RW 1993. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev 7:974–85
    [Google Scholar]
  156. 156. 
    Prior N, Little SA, Boyes I, Griffith P, Husby C et al. 2019. Complex reproductive secretions occur in all extant gymnosperm lineages: a proteomic survey of gymnosperm pollination drops. Plant Reprod. 32:153–66
    [Google Scholar]
  157. 157. 
    Punwani JA, Rabiger DS, Drews GN. 2007. MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus–localized proteins. Plant Cell 19:2557–68
    [Google Scholar]
  158. 158
    Purkyně JE. 1830. De cellulis antherarum fibrosis nec non de granorum pollinarium formis: commentatio phytomica Breslau, Pol: J. D. Gruesonii
  159. 159. 
    Qin XQ, Livingston DM, Ewen M, Sellers WR, Arany Z, Kaelin WG Jr. 1995. The transcription factor E2F-1 is a downstream target of RB action. Mol. Cell. Biol. 15:742–55
    [Google Scholar]
  160. 160. 
    Qin Y, Wysocki RJ, Somogyi A, Feinstein Y, Franco JY et al. 2011. Sulfinylated azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils. Plant J 68:800–15
    [Google Scholar]
  161. 161. 
    Qin Y, Yang ZBA. 2011. Rapid tip growth: insights from pollen tubes. Semin. Cell Dev. Biol. 22:816–24
    [Google Scholar]
  162. 162. 
    Quilichini TD, Grienenberger E, Douglas CJ. 2015. The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–82
    [Google Scholar]
  163. 163. 
    Reimann R, Kah D, Mark C, Dettmer J, Reimann TM et al. 2020. Durotropic growth of pollen tubes. Plant Physiol 183:558–69
    [Google Scholar]
  164. 164. 
    Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M. 2007. Microtubule- and actin filament-dependent motors are distributed on pollen tube mitochondria and contribute differently to their movement. Plant Cell Physiol 48:345–61
    [Google Scholar]
  165. 165. 
    Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A et al. 2005. A novel class of MYB factors controls sperm-cell formation in plants. Curr. Biol. 15:244–48The first publication of DUO1 TF, a central integrator of generative cell mitotic division and sperm cell differentiation.
    [Google Scholar]
  166. 166. 
    Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE. 2003. Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr. Biol. 13:432–36
    [Google Scholar]
  167. 167. 
    Rovekamp M, Bowman JL, Grossniklaus U. 2016. Marchantia MpRKD regulates the gametophyte-sporophyte transition by keeping egg cells quiescent in the absence of fertilization. Curr. Biol. 26:1782–89
    [Google Scholar]
  168. 168. 
    Rudall PJ, Bateman RM. 2007. Developmental bases for key innovations in the seed-plant microgametophyte. Trends Plant Sci 12:317–26
    [Google Scholar]
  169. 169. 
    Russell SD, Jones DS. 2015. The male germline of angiosperms: repertoire of an inconspicuous but important cell lineage. Front. Plant Sci 6:173
    [Google Scholar]
  170. 170. 
    Rutley N, Twell D. 2015. A decade of pollen transcriptomics. Plant Reprod 28:73–89
    [Google Scholar]
  171. 171. 
    Sajeev N, Bai B, Bentsink L. 2019. Seeds: a unique system to study translational regulation. Trends Plant Sci 24:487–95
    [Google Scholar]
  172. 172. 
    Sano N, Rajjou L, North HM. 2020. Lost in translation: physiological roles of stored mRNAs in seed germination. Plants 9:347
    [Google Scholar]
  173. 173. 
    Scarpin MR, Sigaut L, Temprana SG, Boccaccio GL, Pietrasanta LI, Muschietti JP. 2017. Two Arabidopsis late pollen transcripts are detected in cytoplasmic granules. Plant Direct 1:e00012
    [Google Scholar]
  174. 174. 
    Schwacke R, Grallath S, Breitkreuz KE, Stransky E, Stransky H et al. 1999. LeProT1, a transporter for proline, glycine betaine, and γ-amino butyric acid in tomato pollen. Plant Cell 11:377–91
    [Google Scholar]
  175. 175. 
    Scott RJ, Spielman M, Dickinson HG. 2004. Stamen structure and function. Plant Cell 16:SupplS46–60
    [Google Scholar]
  176. 176. 
    Sehgal A, Mann N, Mohan Ram HY 2014. Structural and developmental variability in the female gametophyte of Griffithella hookeriana, Polypleurum stylosum, and Zeylanidium lichenoides and its bearing on the occurrence of single fertilization in Podostemaceae. Plant Reprod 27:205–23
    [Google Scholar]
  177. 177. 
    Shi J, Cui M, Yang L, Kim YJ, Zhang D. 2015. Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci 20:741–53
    [Google Scholar]
  178. 178. 
    Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD et al. 2009. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–72
    [Google Scholar]
  179. 179. 
    Smith DK, Harper JF, Wallace IS. 2018. A potential role for protein O-fucosylation during pollen-pistil interactions. Plant Signal. Behav. 13:e1467687
    [Google Scholar]
  180. 180. 
    Sprunck S. 2020. Twice the fun, double the trouble: gamete interactions in flowering plants. Curr. Opin. Plant Biol. 53:106–16
    [Google Scholar]
  181. 181. 
    Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T. 2012. Egg cell–secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–97Authors provide the first evidence of an egg cell–secreted peptide that activates sperm cells for fusion.
    [Google Scholar]
  182. 182. 
    Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L 2010. Regulation of actin dynamics by actin-binding proteins in pollen. J. Exp. Bot. 61:1969–86
    [Google Scholar]
  183. 183. 
    Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A et al. 2017. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355:287–89
    [Google Scholar]
  184. 184
    Strasburger E. 1884. Neue Untersuchungen über den Befruchtungsvorgang bei den Phanerogamen als Grundlage für eine Theorie der Zeugung Jena, Ger: Gustav Fischer
  185. 185. 
    Takayama S, Shisamoto H, Shiba H, Funato M, Che FS et al. 2001. Direct ligand–receptor complex interaction controls Brassica self-incompatibility. Nature 413:534–38
    [Google Scholar]
  186. 186. 
    Takeuchi H, Higashiyama T. 2012. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLOS Biol 10:e1001449
    [Google Scholar]
  187. 187. 
    Takeuchi H, Higashiyama T. 2016. Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245–48
    [Google Scholar]
  188. 188. 
    Terasaka O, Niitsu T. 1987. Unequal cell division and chromatin differentiation in pollen grain cells. I. Centrifugal, cold and caffeine treatment. Bot. Mag. Tokyo 100:205–16
    [Google Scholar]
  189. 189. 
    Tryon AF. 1964. Platyzoma—a Queensland fern with incipient heterospory. Am. J. Bot. 51:939–42
    [Google Scholar]
  190. 190. 
    Tupý J, Říhová L, Žárský V. 1991. Production of fertile tobacco pollen from microspores in suspension culture and its storage for in situ pollination. Sex. Plant Reprod. 4:284–87
    [Google Scholar]
  191. 191. 
    Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R et al. 2002. MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat. Cell Biol. 4:711–14
    [Google Scholar]
  192. 192. 
    Urquidi Camacho RA, Lokdarshi A, von Arnim AG 2020. Translational gene regulation in plants: a green new deal. Wiley Interdiscip. Rev. RNA 11:e1597
    [Google Scholar]
  193. 193. 
    Uzair M, Xu D, Schreiber L, Shi J, Liang W et al. 2020. PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiol 182:962–76
    [Google Scholar]
  194. 194. 
    van der Kooi CJ, Ollerton J. 2020. The origins of flowering plants and pollinators. Science 368:1306–8
    [Google Scholar]
  195. 195. 
    Vogler F, Schmalzl C, Englhart M, Bircheneder M, Sprunck S. 2014. Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod 27:153–67
    [Google Scholar]
  196. 196. 
    Vogler H, Martinez-Bernardini A, Grossniklaus U. 2016. Maybe she's NOT the boss: male–female crosstalk during sexual plant reproduction. Genome Biol 17:96
    [Google Scholar]
  197. 197. 
    von Aderkas P, Prior NA, Little SA. 2018. The evolution of sexual fluids in gymnosperms from pollination drops to nectar. Front. Plant Sci. 9:1844
    [Google Scholar]
  198. 198. 
    von Besser K, Frank AC, Johnson MA, Preuss D. 2006. Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133:4761–69
    [Google Scholar]
  199. 199. 
    Wan X, Wu S, Li Z, An X, Tian Y 2020. Lipid metabolism: critical roles in male fertility and other aspects of reproductive development in plants. Mol. Plant 13:955–83
    [Google Scholar]
  200. 200. 
    Wang T, Liang L, Xue Y, Jia PF, Chen W et al. 2016. A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241–44
    [Google Scholar]
  201. 201. 
    Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T 2010. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genom 11:338
    [Google Scholar]
  202. 202. 
    Wheeler MJ, de Graaf BHJ, Hadjiosif N, Perry RM, Poulter NS et al. 2009. Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 459:992–95
    [Google Scholar]
  203. 203. 
    Williams JH. 2012. Pollen tube growth rates and the diversification of flowering plant reproductive cycles. Int. J. Plant Sci. 173:649–61
    [Google Scholar]
  204. 204. 
    Williams JH, Reese JB. 2019. Evolution of development of pollen performance. Curr. Top. Dev. Biol. 131:299–336
    [Google Scholar]
  205. 205. 
    Williams JH, Taylor ML, O'Meara BC. 2014. Repeated evolution of tricellular (and bicellular) pollen. Am. J. Bot. 101:559–71
    [Google Scholar]
  206. 206. 
    Wong JL, Wessel GM. 2006. Defending the zygote: search for the ancestral animal block to polyspermy. Curr. Top. Dev. Biol. 72:1–151
    [Google Scholar]
  207. 207. 
    Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R. 1992. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4:759–71
    [Google Scholar]
  208. 208. 
    Yamaoka S, Nishihama R, Yoshitake Y, Ishida S, Inoue K et al. 2018. Generative cell specification requires transcription factors evolutionarily conserved in land plants. Curr. Biol. 28:479–86.e5
    [Google Scholar]
  209. 209. 
    Yuan TL, Huang WJ, He J, Zhang D, Tang WH. 2018. Stage-specific gene profiling of germinal cells helps delineate the mitosis/meiosis transition. Plant Physiol 176:1610–26
    [Google Scholar]
  210. 210. 
    Zaki MAM, Dickinson H. 1991. Microspore-derived embryos in Brassica: the significance of division asymmetry in pollen mitosis I to embryogenic development. Sex. Plant Reprod. 4:48–55
    [Google Scholar]
  211. 211. 
    Zaveska Drabkova L, Honys D 2017. Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development. PLOS ONE 12:e0187331
    [Google Scholar]
  212. 212. 
    Zhang D, Shi J, Yang X 2016. Role of lipid metabolism in plant pollen exine development. Subcell Biochem 86:315–37
    [Google Scholar]
  213. 213. 
    Zhang J, Huang Q, Zhong S, Bleckmann A, Huang J et al. 2017. Sperm cells are passive cargo of the pollen tube in plant fertilization. Nat. Plants 3:17079
    [Google Scholar]
  214. 214. 
    Zhang X, Zhao G, Tan Q, Yuan H, Betts N et al. 2020. Rice pollen aperture formation is regulated by the interplay between OsINP1 and OsDAF1. Nat. Plants 6:394–403
    [Google Scholar]
  215. 215. 
    Zhou Y, Dobritsa AA. 2020. Building portals in pollen. Nat. Plants 6:334–35
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-080620-021907
Loading
/content/journals/10.1146/annurev-arplant-080620-021907
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error