Skip to main content
Log in

Efficient Sensitized Luminescence of Binuclear Ln(III) Complexes Based on a Chelating Bis-Carbacylamidophosphate

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Binuclear rare earth complexes Ln2L3phen2 (LnIII = NdIII, SmIII, EuIII, TbIII, DyIII, YbIII and YIII) with bis-CAPh type ligand - tetramethyl N,N′-(2,2,3,3,4,4-hexafluoro-1,5-dioxopentane-1,5-diyl)bis(phosphoramidate) (H2L) and 1,10-phenanthroline (phen) were synthesized and characterized by elemental analysis, IR, NMR, absorption and luminescence spectroscopy. Luminescence measurements were performed for all the complexes in solid state and for the EuIII, TbIII and YIII complexes - in solution in DMSO as well. The effective energy transfer from organic ligands to LnIII ions strongly sensitizes the LnIII ions emission and under excitation by UV light, the complexes exhibited bright characteristic emission of lanthanide metal centers. It was found that the energy level of the ligands lowest triplet state in the complexes matches better to resonance level of EuIII rather than TbIII ion. Depending on temperature the emission decay times of solid europium and terbium complexes were in the range of 1.5–2.0 ms. In solid state at room temperature the EuIII complex possess intense luminescence with very high intrinsic quantum yield 91% and decay time equal 1.88 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Bunzli J-CG (1989) Luminescent Probes. In: Bunzli J-CG, Choppin GR (eds) Lanthanide probes in life, chemical and earth sciences: theory and practice. Elsevier, Amsterdam, pp 219–293

    Google Scholar 

  2. Blasse G, Grabmaier BC (1994) Luminescent materials. Spinger-Verlag, Berlin

    Book  Google Scholar 

  3. Glover PB, Ashton PR, Childs LJ, Rodger A, Kercher M, Williams RM, De Cola L, Pikramenou Z (2003) Hairpin-shaped Heterometallic luminescent lanthanide complexes for DNA intercalative recognition. J Am Chem Soc 125:9918–9919. https://doi.org/10.1021/ja029886s

    Article  CAS  PubMed  Google Scholar 

  4. Bunzli J-CG, Comby S, Chauvin AS, Vandevyver CDB (2007) New opportunities for lanthanide luminescence. J Rare Earth 25:257–274. https://doi.org/10.1016/S1002-0721(07)60420-7

    Article  Google Scholar 

  5. Eliseeva SV, Bunzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227. https://doi.org/10.1039/B905604C

    Article  CAS  PubMed  Google Scholar 

  6. Bunzli J-CG (2016) Lanthanide luminescence: from a mystery to rationalization, understanding, and applications. In: Bünzli J-C, Pecharsky V (eds) Handbook on the physics and chemistry of rare earths. Elsevier, Amsterdam, pp 141–177

    Google Scholar 

  7. Bünzli J-CG (2015) On the design of highly luminescent lanthanide complexes. Coord Chem Rev 293-294:19–47. https://doi.org/10.1016/j.ccr.2014.10.013

    Article  CAS  Google Scholar 

  8. Beeby A, Clarkson IM, Dickins RS, Faulkner S, Parker D, Royle L, de Sousa AS, Gareth Williams JA, Woods M (1999) Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J Chem Soc Perkin Trans 2:493–504. https://doi.org/10.1039/A808692C

    Article  Google Scholar 

  9. Maas H, Currao A, Calzaferri G (2002) Encapsulated lanthanides as luminescent materials. Angew Chem Int Ed 41:2495–2497. https://doi.org/10.1002/1521-3773(20020715)41:14<2495::AID-ANIE2495>3.0.CO;2-G

    Article  CAS  Google Scholar 

  10. Xiang N-J, Leung LM, So S-K, Gon M-L (2006) Preparation and photoluminescence of a novel β-diketone ligand containing electro-transporting group and its europium(III) ternary complex. Spectrochim Acta Part A 65:907–911. https://doi.org/10.1016/j.saa.2006.01.030

    Article  CAS  Google Scholar 

  11. Binnemans K (2005) Rare-earth beta-diketonates. In: Gschneider KA Jr, Bunzli J-C, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earths. Elsevier, Amsterdam, pp 107–272

    Google Scholar 

  12. Oczko G, Legendziewicz J, Trush V, Amirkhanov V (2003) X-ray analysis and excited state dynamics in a new class of lanthanide mixed chelates of the type LnPhβ3·Phen (Ln = Sm, Eu, Gd, Tb). New J Chem 27:948–956. https://doi.org/10.1039/B211044J

    Article  CAS  Google Scholar 

  13. Cybińska J, Legendziewicz J, Trush V, Reisfeld R, Saraidarov T (2008) Structural characteristic and luminescence properties of first known example of a pair of europium(III) complexes of phosphoroazo-derivative of β-diketone with inner and both inner and outer sphere 2,2′-bipyridine. J Alloy Compd 451:264–269. https://doi.org/10.1016/j.jallcom.2007.04.183

    Article  CAS  Google Scholar 

  14. Gawryszewska P, Moroz OV, Trush VA, Kulesza D, Amirkhanov VM (2011) Structure and sensitized near-infrared luminescence of Yb(III) complexes with sulfonylamidophosphate type ligand. J Photochem Photobiol A 217:1–9. https://doi.org/10.1016/j.jphotochem.2010.06.033

    Article  CAS  Google Scholar 

  15. Litsis OO, Ovchynnikov VA, Scherbatskii VP, Nedilko SG, Sliva TY, Dyakonenko VV, Shishkin OV, Davydov VI, Gawryszewska P, Amirkhanov VM (2015) Lanthanide mixed-ligand complexes of the [Ln(CAPh)3(Phen)] and [LaxEu1-x(CAPh)3(Phen)] (CAPh = carbacylamidophosphate) type. A comparative study of their spectral properties. Dalton Trans 44:15508–15522. https://doi.org/10.1039/c5dt02557e

    Article  CAS  PubMed  Google Scholar 

  16. Kariaka NS, Trush VA, Gawryszewska P, Dyakonenko VV, Shishkina SV, Sliva TY, Amirkhanov VM (2016) Spectroscopy and structure of [LnL3bipy] and [LnL3phen] complexes with CAPh type ligand dimethylbenzoylamidophosphate. J Lumin 178:392–399. https://doi.org/10.1016/j.jlumin.2016.06.018

    Article  CAS  Google Scholar 

  17. Yan B, Zhang HJ, Wang SB, Ni JZ (1998) Photophysical properties of some binary and ternary complexes of rare earth ions with aminobenzoic acids and 1,10 phenanthroline. Monatsh Chem 129:151–158. https://doi.org/10.1007/PL00010151

    Article  CAS  Google Scholar 

  18. Yan B, Zhang HJ, Wang SB, Ni JZ (1998) Spectroscopic study of luminescence and energy transfer of binary and ternary complexes of rare earth with aromatic carboxylic acids and 1,10-phenanthroline. Spectrosc Lett 31:603–613. https://doi.org/10.1080/00387019808002753

    Article  CAS  Google Scholar 

  19. Zheng J-R, Ren N, Zhang J-J, Zhang D-H, Yan L-Z, Wu K-Z (2012) Synthesis, characterization and thermochemical properties of four new lanthanide complexes with 3,5-diisopropylsalicylic acid and 1,10-phenanthroline. Thermochim Acta 547:31–37. https://doi.org/10.1016/j.tca.2012.08.005

    Article  CAS  Google Scholar 

  20. Wankar S, Limaye SN (2015) Luminescence and electronic spectral studies of some synthesized lanthanide complexes using benzoic acid derivative and o-Phenanthroline. J Fluoresc 25:787–794. https://doi.org/10.1007/s10895-015-1573-6

    Article  CAS  PubMed  Google Scholar 

  21. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374. https://doi.org/10.1021/cr8003983

    Article  CAS  PubMed  Google Scholar 

  22. Kido J, Okamoto Y (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem Rev 102:2357–2368. https://doi.org/10.1021/cr010448y

    Article  CAS  PubMed  Google Scholar 

  23. Xu H, Sun Q, An Z, Wei Y, Liu X (2015) Electroluminescence from europium(III) complexes. Coord Chem Rev 293-294:228–249. https://doi.org/10.1016/j.ccr.2015.02.018

    Article  CAS  Google Scholar 

  24. Yan S, Zhang H-J, Ni J-Z (2008) Synthesis, luminescence properties and energy transfer of binary and ternary rare earth complexes with aromatic acids and 1,10-phenanthroline. Chin J Chem 15:242–249. https://doi.org/10.1002/cjoc.19970150308

    Article  Google Scholar 

  25. Zhang H-J, Yan B, Wang S-B, Ni (1997) The photophysical properties of binary and ternary complexes of rare earths with conjugated carboxylic acids and 1,10-phenanthroline. J Photochem and Photobiol A 109:223–228. https://doi.org/10.1016/S1010-6030(97)00144-5

  26. Li H-F, Yan P-F, Chen P, Yan W, Xu H, Li G-M (2012) Highly luminescent bis-diketone lanthanide complexes with triple-stranded dinuclear structure. Dalton Trans 41:900–907. https://doi.org/10.1039/C1DT11496D

    Article  CAS  PubMed  Google Scholar 

  27. Bassett AP, Magennis SW, Glover PB, Lewis DJ, Spencer N, Parsons S, Williams RM, De Cola L, Pikramenou Z (2004) Highly luminescent, triple- and quadruple-stranded, dinuclear Eu, Nd, and Sm(III) lanthanide complexes based on bis-diketonate ligands. J Am Chem Soc 126:9413–9424. https://doi.org/10.1021/ja048022z

    Article  CAS  PubMed  Google Scholar 

  28. Li H-F, Li G-M, Chen P, Sun W-B, Yan P-F (2012) Highly luminescent lanthanide complexes with novel bis-β-diketone ligand: synthesis, characterization and photoluminescent properties. Spectrochim Acta Part A: Molecular and Biomolecular Spectroscopy 97:197–120. https://doi.org/10.1016/j.saa.2012.05.078

    Article  CAS  Google Scholar 

  29. Liu S, He P, Wang H, Shi J, Gong M (2009) A luminescent quadruple stranded dinuclear Eu(III) complex based on 2,8-bis(4′,4′,4′-trifluoro-1′,3′-dioxobutyl)-dibenzothiophene for light-emitting diodes. Inorg Chem Communs 12:506–508. https://doi.org/10.1016/j.inoche.2009.04.004

    Article  CAS  Google Scholar 

  30. Luo Y-M, Chen Z, Tang R-R, Xiao L-X, Peng H-J (2008) Investigations into the synthesis and fluorescence properties of Eu(III), Tb(III), Sm(III) and Gd(III) complexes of a novel bis-β-diketone-type ligand. Spectrochim Acta Part A: Molecular and Biomolecular Spectroscopy 69:513–516. https://doi.org/10.1016/j.saa.2007.04.029

    Article  CAS  Google Scholar 

  31. Albrecht M, Schmid S, Dehn S, Wickleder C, Zhang S, Bassett AP, Pikramenou Z, Fröhlich R (2007) Diastereoselective formation of luminescent dinuclear lanthanide(III) helicates with enantiomerically puretartaric acid derived bis(β-diketonate) ligands. New J Chem 31:1755–1762. https://doi.org/10.1039/B705090A

    Article  CAS  Google Scholar 

  32. He P, Wang HH, Yan HG, Hu W, Shi JX, Gong ML (2010) A strong red-emitting carbazole based europium(III) complex excited by blue light. Dalton Trans 39:8919–8924. https://doi.org/10.1039/c0dt00424c

    Article  CAS  PubMed  Google Scholar 

  33. Gu H, Hou Y, Xu F and Wang S. (2015) Electrospinning preparation, thermal, and luminescenceproperties of Eu2(BTP)3(Phen)2 complex doped in PMMA: colloid Polym Sci 293: 2201–2208. https://doi.org/10.1007/s00396-015-3614-8

  34. Chu W, Shi X, Gu H, Wang B, Sun Z (2013) Crystal Structure and Highly Luminescent Properties Studies of Bis-β-diketonate Lanthanide Complexes. Inorg Chem 52:5013–5022. https://doi.org/10.1021/ic302726z

    Article  CAS  PubMed  Google Scholar 

  35. Amirkhanov V, Ovchynnikov V, Trush V, Gawryszewska P, Jerzykiewicz LB (2014) Powerful new ligand systems: Carbacylamidophosphates (CAPh) and Sulfonylamidophosphates (SAPh). In: Gawryszewska P, Smolenski P (eds) Ligands synthethis, characterisation and role in biotechnology. Nova Science Publishers, New York, pp 199–248

    Google Scholar 

  36. Horniichuk OY, Kariaka NS, Trush VO, Smola SS, Sliva TY, Rusakova NV, Amirkhanov VM (2019) Synthesis and investigation of binuclear rare earth complexes based on bis-chelating carbacylamidophosphate (Ukr.). Voprosy khimii i khimicheskoi tekhnologii no. 5: 27-33. https://doi.org/10.32434/0321-4095-2019-126-5-27-33 ·

  37. Trush VA, Gubina KE, Gumeniuk YO, Sliva TY and Konovalova IS (2012) Tetramethyl N,N'-(2,2,3,3,4,4-hexafluoro-1,5-dioxopentane-1,5-diyl)bis-(phosphoramidate). Acta Cryst E68: 1127. https://doi.org/10.1107/S1600536812011191, TetramethylN,N′-(2,2,3,3,4,4-hexafluoro-1,5-dioxopentane-1,5-diyl)bis(phosphoramidate)

  38. Jergensen CK, Judd BR (1964) Hypersensitive pseudoquadrupole transitions in lanthanides. Molec Phys 8:281–290. https://doi.org/10.1080/00268976400100321

    Article  Google Scholar 

  39. Choppin GR, Henrie DE, Buijs K (1966) Environmental effects on f-f transitions. I. Neodymium(III). Inorg Chem 5:1743–1748. https://doi.org/10.1021/ic50044a023

    Article  CAS  Google Scholar 

  40. Henrie DE, Choppin GR (1968) Environmental effects on f–f transitions. II. “Hypersensitivity” in some complexes of trivalent neodymium. J Chem Phys 49:477–481. https://doi.org/10.1063/1.1670099

    Article  CAS  Google Scholar 

  41. Gawryszewska P, Sokolnicki J, Legendziewicz J (2005) Photophysics and structure of selected lanthanide compounds. Coord Chem Rev 249:2489–2509. https://doi.org/10.1016/j.ccr.2005.06.021

    Article  CAS  Google Scholar 

  42. Kariaka NS, Trush VA, Medviediev VV, Dyakonenko VV, Shishkin OV, Smola SS, Fadeyev EM, Rusakova NV, Amirkhanov VM (2016) Coordination compounds based on CAPh type ligand: synthesis, structural characteristics and luminescence properties of tetrakis-complexes CsLnL4 with dimethylbenzoylamidophosphate. J Coord Chem 69:123–134. https://doi.org/10.1080/00958972.2015.1115024

    Article  CAS  Google Scholar 

  43. Olyshevets IP, Dyakonenko VV, Shyshkina SV, Trush VO, Sliva TY, Amirkhanov VM (2018) Synthesis, structural and spectral studies of anionic tetrakis-complexes of lanthanides CsLnL4 with SAPh-ligand – dimethyl(phenylsulfonyl)amidophosphate (Ukr.). Voprosy khimii i khimicheskoi tekhnologii, no. 6: 56-62. https://doi.org/10.32434/0321-4095-2018-121-6-56-62

  44. Gutierrez F, Tedeschi C, Maron L, Daudey J-P, Poteau R, Azema J, Tisnès P, Picard C (2004) Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties. J Chem Soc Dalton Trans 9:1334–1347. https://doi.org/10.1039/b316246j

    Article  CAS  Google Scholar 

  45. Shevchuk SV, Rusakova NV, Turianskaya AM, Korovin YV, Nazarenko NA, Gren AI (1998) Infrared luminescence of ytterbium ion in complexes with calix[4]resorcinarenes. J Fluoresc 8:225–228. https://doi.org/10.1023/A:1022505716725

    Article  CAS  Google Scholar 

  46. Quici S, Cavazzini M, Marzanni G, Accorsi G, Armaroli N, Ventura B, Barigelletti F (2005) Visible and near-infrared intense luminescence from water-soluble lanthanide [Tb(III), Eu(III), Sm(III), Dy(III), Pr(III), ho(III), Yb(III), Nd(III), Er(III)] complexes. Inorg Chem 44:529–537. https://doi.org/10.1021/ic0486466

    Article  CAS  PubMed  Google Scholar 

  47. Zhang J, Petoud S (2008) Ligand for the efficient sensitization of four near-infrared luminescent lanthanide Cations: Nd3+, Er3+, Tm3+, and Yb3+. Chem Eur J 14:1264–1272. https://doi.org/10.1002/chem.200701068

    Article  CAS  PubMed  Google Scholar 

  48. Comby S, Bunzli J-CG (2007) Lanthanide near-infrared luminescence in molecular probes and devices. In: Gscheidner KA Jr, Bunzli J-CG, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earth, vol 37. Elsevier Science, Amsterdam, pp 217–470

    Google Scholar 

  49. Gawryszewska P, Moroz OV, Trush VA, Amirkhanov VM, Lis T, Sobczyk M, Siczek M (2012) Spectroscopy and structure of LnIII complexes with Sulfonylamidophosphate-type ligands as sensitizers of visible and near-infrared luminescence. ChemPlusChem 77:482–496. https://doi.org/10.1002/cplu.201200026

    Article  CAS  Google Scholar 

  50. Solarz P, Sobczyk M (2012) Spectroscopic properties of Sm3+ in KZnLa(PO4)2 in IR–VUV region. Opt Mater 34:1826–1832. https://doi.org/10.1016/j.optmat.2012.05.011

    Article  CAS  Google Scholar 

  51. Sobczyk M, Szymański D (2013) A study of optical properties of Sm3+ ions in α-Na3Y(VO4)2 single crystals. J Lumin 142:96–102. https://doi.org/10.1016/j.jlumin.2013.03.062

    Article  CAS  Google Scholar 

  52. Sobczyk M, Korzeniowski K, Guzik M, Cybińska J, Gerasymchuk Y, Trush VA, Legendziewicz J (2018) Spectroscopic behaviour of Na[Sm(SP)4] (where SP = C6H5S(O)2NP(O)(OCH3)2) and its polymeric material-new orange emitting phosphors. J Lumin 193:90–97. https://doi.org/10.1016/j.jlumin.2017.08.064

    Article  CAS  Google Scholar 

  53. Brito HF, Malta OL, Felinto MCFC, Teotonio EES, Menezes JFS, Silva CFB, Tomiyama CS, Carvalho CAA (2002) Luminescence investigation of the Sm(III)-b-diketonates with sulfoxides, phosphine oxides and amides ligands. J Alloys and Compds 344:293–297. https://doi.org/10.1016/S0925-8388(02)00372-9

  54. Mathis G (1993) Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin Chem 39:1953–1959

  55. Hemmila I, Mukkala V-M, Takalo H (1997) Development of luminescent lanthanide chelate labels for diagnostic assays. J Alloys Compds 249:158–162. https://doi.org/10.1016/S0925-8388(96)02834-4

  56. Bazin H, Trinquet E, Mathis G (2002) Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. Rev Mol Biotechnol 82:233–250. https://doi.org/10.1016/S1389-0352(01)00040-X

    Article  CAS  Google Scholar 

  57. Hemmil I, Laitala V (2005) Progress in lanthanides as luminescent probes. J Fluoresc 15:529–542. https://doi.org/10.1007/s10895-005-2826-6

    Article  CAS  Google Scholar 

  58. Ghose S, Trinquet E (2008) Laget, H. Bazin, G. Mathis, rare earth cryptates for the investigation of molecular interactions in vitro and in living cells. J Alloys Compds 451:35–37. https://doi.org/10.1016/j.jallcom.2007.04.054

    Article  CAS  Google Scholar 

  59. Montgomery CP, Murray BS, New EJ, Paj R, Parker D (2009) Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence. Acc Chem Res 42:925–937. https://doi.org/10.1021/ar800174z

    Article  CAS  PubMed  Google Scholar 

  60. Kariaka NS, Trush VA, Smola SS, Fadeyev EM, Odynets IV, Sliva TY, Amirkhanov VM (2016) Tris-(diphenylphosphryl)benzamide lanthanides (III) trinitrates as a basis for creating the luminophore materials. Dopov Nac Acad Nauk (Ukr) 5:85–94. https://doi.org/10.15407/DOPOVIDI2016.05.085

    Article  Google Scholar 

  61. van der Tol EB, van Ramesdonk HJ, Verhoeven JW, Steemers FJ, Kerver EG, Verboom W, Reinhoudt DN (1998) Tetraazatriphenylenes as extremely efficient antenna Chromophores for luminescent lanthanide ions. Chem Eur J 4:2315–2323. https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2315::AID-CHEM2315>3.0.CO;2-E

    Article  Google Scholar 

  62. Werts MHV, Jukes RTF, Verhoeven JW (2002) The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys Chem Chem Phys 4:1542–1548. https://doi.org/10.1039/B107770H

    Article  CAS  Google Scholar 

  63. Bunzli J-CG, Eliseeva SV (2011) Basiscs of lanthanide photophysics. In: Hänninen P, Härmä H (eds) Lanthanide luminescence: Photophysical. Analytical and Biological Aspects, Springer Series on Fluorescence, pp 1–46

    Google Scholar 

  64. de Sa GF, Malta OL, de Mello DC, Simas AM, Longo RL, Santa-Cruz PA, da Silva EF (2000) Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord Chem Rev 196:165–195. https://doi.org/10.1016/S0010-8545(99)00054-5

    Article  Google Scholar 

  65. Latva M, Takalo H, Mukkala VM, Matachescu C, Rodríguez-Ubis JC, Kankare J (1997) Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J Lumin 75:149–169. https://doi.org/10.1016/S0022-2313(97)00113-0

    Article  CAS  Google Scholar 

Download references

Contributions

All the authors (O. Y. Horniichuk, N. S. Kariaka, S. S. Smola, N. V. Rusakova, V. O. Trush, T. Y. Sliva, V. M. Amirkhanov) made substantial contribution while preparing the manuscript.

Funding

This work was supported by the Ministry of Education and Science of Ukraine (Project no. 19BF037–05).

The publication contains the results of studies conducted by President’s of Ukraine grant for competitive projects (Project no. 19BF037–06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Kariaka.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 3898 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horniichuk, O.Y., Kariaka, N.S., Smola, S.S. et al. Efficient Sensitized Luminescence of Binuclear Ln(III) Complexes Based on a Chelating Bis-Carbacylamidophosphate. J Fluoresc 31, 1029–1039 (2021). https://doi.org/10.1007/s10895-021-02733-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02733-0

Keywords

Navigation