1932

Abstract

DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-080320-112510
2021-06-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-080320-112510.html?itemId=/content/journals/10.1146/annurev-biochem-080320-112510&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lawley PD, Phillips DH. 1996. DNA adducts from chemotherapeutic agents. Mutat. Res. 355:13–40
    [Google Scholar]
  2. 2. 
    Brookes P, Lawley PD. 1960. The reaction of mustard gas with nucleic acids in vitro and in vivo. Biochem. J. 77:478–84
    [Google Scholar]
  3. 3. 
    Deans AJ, West SC. 2011. DNA interstrand crosslink repair and cancer. Nat. Rev. Cancer 11:467–80
    [Google Scholar]
  4. 4. 
    Niraj J, Farkkila A, D'Andrea AD. 2019. The Fanconi anemia pathway in cancer. Annu. Rev. Cancer Biol. 3:457–78
    [Google Scholar]
  5. 5. 
    Gates KS. 2009. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem. Res. Toxicol. 22:1747–60
    [Google Scholar]
  6. 6. 
    Legerski RJ. 2010. Repair of DNA interstrand cross-links during S phase of the mammalian cell cycle. Environ. Mol. Mutagen. 51:540–51
    [Google Scholar]
  7. 7. 
    Williams HL, Gottesman ME, Gautier J. 2013. The differences between ICL repair during and outside of S phase. Trends Biochem. Sci. 38:386–93
    [Google Scholar]
  8. 8. 
    Huang H, Zhu L, Reid BR, Drobny GP, Hopkins PB. 1995. Solution structure of a cisplatin-induced DNA interstrand cross-link. Science 270:1842–45
    [Google Scholar]
  9. 9. 
    Huang H, Hopkins PB. 1993. DNA interstrand cross-linking by formaldehyde: nucleotide sequence preference and covalent structure of the predominant cross-link formed in synthetic oligonucleotides. J. Am. Chem. Soc. 115:9401–8
    [Google Scholar]
  10. 10. 
    Lu K, Collins LB, Ru H, Bermudez E, Swenberg JA. 2010. Distribution of DNA adducts caused by inhaled formaldehyde is consistent with induction of nasal carcinoma but not leukemia. Toxicol. Sci. 116:441–51
    [Google Scholar]
  11. 11. 
    Hata T, Hoshi T, Kanamori K, Matsumae A, Sano Y, Shima T, Sugawara R. 1956. Mitomycin, a new antibiotic from Streptomyces. I. J. Antibiot. 9:141–46
    [Google Scholar]
  12. 12. 
    Hata T, Koga F, Sano Y, Kanamori K, Matsumae A et al. 1954. Carzinophilin, a new tumor inhibitory substance produced by Streptomyces. I. J. Antibiot. 7:107–12
    [Google Scholar]
  13. 13. 
    Xue M, Kim CS, Healy AR, Wernke KM, Wang Z et al. 2019. Structure elucidation of colibactin and its DNA cross-links. Science 365:eaax2685
    [Google Scholar]
  14. 14. 
    Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD et al. 2019. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363:eaar7785
    [Google Scholar]
  15. 15. 
    Xue M, Wernke KM, Herzon SB. 2020. Depurination of colibactin-derived interstrand cross-links. Biochemistry 59:892–900
    [Google Scholar]
  16. 16. 
    Burgers PMJ, Kunkel TA. 2017. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86:417–38
    [Google Scholar]
  17. 17. 
    Kottemann MC, Smogorzewska A. 2013. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493:356–63
    [Google Scholar]
  18. 18. 
    Auerbach AD. 2009. Fanconi anemia and its diagnosis. Mutat. Res. 668:4–10
    [Google Scholar]
  19. 19. 
    Thompson LH, Hinz JM. 2009. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. Mutat. Res. 668:54–72
    [Google Scholar]
  20. 20. 
    Duxin JP, Walter JC. 2015. What is the DNA repair defect underlying Fanconi anemia?. Curr. Opin. Cell Biol. 37:49–60
    [Google Scholar]
  21. 21. 
    Basbous J, Constantinou A. 2019. A tumor suppressive DNA translocase named FANCM. Crit. Rev. Biochem. Mol. Biol. 54:27–40
    [Google Scholar]
  22. 22. 
    Ishiai M, Kitao H, Smogorzewska A, Tomida J, Kinomura A et al. 2008. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 15:1138–46
    [Google Scholar]
  23. 23. 
    Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald ER 3rd, Hurov KE et al. 2007. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129:289–301
    [Google Scholar]
  24. 24. 
    Taniguchi T, Garcia-Higuera I, Andreassen PR, Gregory RC, Grompe M, D'Andrea AD. 2002. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100:2414–20
    [Google Scholar]
  25. 25. 
    Peng M, Litman R, Jin Z, Fong G, Cantor SB 2006. BACH1 is a DNA repair protein supporting BRCA1 damage response. Oncogene 25:2245–53
    [Google Scholar]
  26. 26. 
    Elia AE, Wang DC, Willis NA, Boardman AP, Hajdu I et al. 2015. RFWD3-dependent ubiquitination of RPA regulates repair at stalled replication forks. Mol. Cell 60:280–93
    [Google Scholar]
  27. 27. 
    Muniandy PA, Liu J, Majumdar A, Liu ST, Seidman MM. 2010. DNA interstrand crosslink repair in mammalian cells: step by step. Crit. Rev. Biochem. Mol. Biol. 45:23–49
    [Google Scholar]
  28. 28. 
    Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q et al. 2002. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606–9
    [Google Scholar]
  29. 29. 
    Niedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P, Patel KJ 2004. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 15:607–20
    [Google Scholar]
  30. 30. 
    Mirchandani KD, McCaffrey RM, D'Andrea AD. 2008. The Fanconi anemia core complex is required for efficient point mutagenesis and Rev1 foci assembly. DNA Repair 7:902–11
    [Google Scholar]
  31. 31. 
    Papadopoulo D, Guillouf C, Mohrenweiser H, Moustacchi E 1990. Hypomutability in Fanconi anemia cells is associated with increased deletion frequency at the HPRT locus. PNAS 87:8383–87
    [Google Scholar]
  32. 32. 
    De Silva IU, McHugh PJ, Clingen PH, Hartley JA. 2000. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol. Cell. Biol. 20:7980–90
    [Google Scholar]
  33. 33. 
    Niedernhofer LJ, Lalai AS, Hoeijmakers JH. 2005. Fanconi anemia (cross)linked to DNA repair. Cell 123:1191–98
    [Google Scholar]
  34. 34. 
    Raschle M, Knipsheer P, Enoiu M, Angelov T, Sun J et al. 2008. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134:969–80
    [Google Scholar]
  35. 35. 
    Zhang J, Dewar JM, Budzowska M, Motnenko A, Cohn MA, Walter JC. 2015. DNA interstrand cross-link repair requires replication-fork convergence. Nat. Struct. Mol. Biol. 22:242–47
    [Google Scholar]
  36. 36. 
    Wu RA, Semlow DR, Kamimae-Lanning AN, Kochenova OV, Chistol G et al. 2019. TRAIP is a master regulator of DNA interstrand crosslink repair. Nature 567:267–72
    [Google Scholar]
  37. 37. 
    Hoffmann S, Smedegaard S, Nakamura K, Mortuza GB, Raschle M et al. 2016. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress. J. Cell Biol. 212:63–75
    [Google Scholar]
  38. 38. 
    Li N, Wang J, Wallace SS, Chen J, Zhou J, D'Andrea AD. 2020. Cooperation of the NEIL3 and Fanconi anemia/BRCA pathways in interstrand crosslink repair. Nucleic Acids Res 48:3014–28
    [Google Scholar]
  39. 39. 
    Olivieri M, Cho T, Alvarez-Quilon A, Li K, Schellenberg MJ et al. 2020. A genetic map of the response to DNA damage in human cells. Cell 182:481–96.e21
    [Google Scholar]
  40. 40. 
    Fullbright G, Rycenga HB, Gruber JD, Long DT. 2016. p97 promotes a conserved mechanism of helicase unloading during DNA cross-link repair. Mol. Cell. Biol. 36:2983–94
    [Google Scholar]
  41. 41. 
    Amunugama R, Willcox S, Wu A, Abdullah UB, El-Sagheer AH et al. 2018. Replication fork reversal during DNA interstrand crosslink repair requires CMG unloading. Cell Rep 23:3419–28
    [Google Scholar]
  42. 42. 
    Gari K, Decaillet C, Delannoy M, Wu L, Constantinou A 2008. Remodeling of DNA replication structures by the branch point translocase FANCM. PNAS 105:16107–12
    [Google Scholar]
  43. 43. 
    Klein Douwel D, Boonen RA, Long DT, Szypowska AA, Raschle M et al. 2014. XPF-ERCC1 acts in unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol. Cell 54:460–71
    [Google Scholar]
  44. 44. 
    Long DT, Joukov V, Budzowska M, Walter JC. 2014. BRCA1 promotes unloading of the CMG helicase from a stalled DNA replication fork. Mol. Cell 56:174–85
    [Google Scholar]
  45. 45. 
    Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV et al. 2009. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326:1698–701
    [Google Scholar]
  46. 46. 
    Lachaud C, Castor D, Hain K, Munoz I, Wilson J et al. 2014. Distinct functional roles for the two SLX4 ubiquitin-binding UBZ domains mutated in Fanconi anemia. J. Cell Sci. 127:2811–17
    [Google Scholar]
  47. 47. 
    Yamamoto KN, Kobayashi S, Tsuda M, Kurumizaka H, Takata M et al. 2011. Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway. PNAS 108:6492–96
    [Google Scholar]
  48. 48. 
    Hoogenboom WS, Boonen R, Knipscheer P. 2019. The role of SLX4 and its associated nucleases in DNA interstrand crosslink repair. Nucleic Acids Res 47:2377–88
    [Google Scholar]
  49. 49. 
    Guervilly JH, Takedachi A, Naim V, Scaglione S, Chawhan C et al. 2015. The SLX4 complex is a SUMO E3 ligase that impacts on replication stress outcome and genome stability. Mol. Cell 57:123–37
    [Google Scholar]
  50. 50. 
    Kim Y, Spitz GS, Veturi U, Lach FP, Auerbach AD, Smogorzewska A. 2013. Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4. Blood 121:54–63
    [Google Scholar]
  51. 51. 
    Hashimoto K, Wada K, Matsumoto K, Moriya M. 2015. Physical interaction between SLX4 (FANCP) and XPF (FANCQ) proteins and biological consequences of interaction-defective missense mutations. DNA Repair 35:48–54
    [Google Scholar]
  52. 52. 
    Crossan GP, van der Weyden L, Rosado IV, Langevin F, Gaillard PH et al. 2011. Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia. Nat. Genet. 43:147–52
    [Google Scholar]
  53. 53. 
    Abdullah UB, McGouran JF, Brolih S, Ptchelkine D, El-Sagheer AH et al. 2017. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks. EMBO J 36:2047–60
    [Google Scholar]
  54. 54. 
    Zhang J, Walter JC. 2014. Mechanism and regulation of incisions during DNA interstrand cross-link repair. DNA Repair 19:135–42
    [Google Scholar]
  55. 55. 
    Hodskinson MR, Silhan J, Crossan GP, Garaycoechea JI, Mukherjee S et al. 2014. Mouse SLX4 is a tumor suppressor that stimulates the activity of the nuclease XPF-ERCC1 in DNA crosslink repair. Mol. Cell 54:472–84
    [Google Scholar]
  56. 56. 
    Kuraoka I, Kobertz WR, Ariza RR, Biggerstaff M, Essigmann JM, Wood RD. 2000. Repair of an interstrand DNA cross-link initiated by ERCC1-XPF repair/recombination nuclease. J. Biol. Chem. 275:26632–36
    [Google Scholar]
  57. 57. 
    Fisher LA, Bessho M, Bessho T. 2008. Processing of a psoralen DNA interstrand cross-link by XPF-ERCC1 complex in vitro. J. Biol. Chem. 283:1275–81
    [Google Scholar]
  58. 58. 
    Wang AT, Sengerova B, Cattell E, Inagawa T, Hartley JM et al. 2011. Human SNM1A and XPF-ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes Dev 25:1859–70
    [Google Scholar]
  59. 59. 
    Dronkert ML, de Wit J, Boeve M, Vasconcelos ML, van Steeg H et al. 2000. Disruption of mouse SNM1 causes increased sensitivity to the DNA interstrand cross-linking agent mitomycin C. Mol. Cell. Biol. 20:4553–61
    [Google Scholar]
  60. 60. 
    Thongthip S, Bellani M, Gregg SQ, Sridhar S, Conti BA et al. 2016. Fan1 deficiency results in DNA interstrand cross-link repair defects, enhanced tissue karyomegaly, and organ dysfunction. Genes Dev 30:645–59
    [Google Scholar]
  61. 61. 
    Fontebasso Y, Etheridge TJ, Oliver AW, Murray JM, Carr AM. 2013. The conserved Fanconi anemia nuclease Fan1 and the SUMO E3 ligase Pli1 act in two novel Pso2-independent pathways of DNA interstrand crosslink repair in yeast. DNA Repair 12:1011–23
    [Google Scholar]
  62. 62. 
    Roy U, Scharer OD. 2016. Involvement of translesion synthesis DNA polymerases in DNA interstrand crosslink repair. DNA Repair 44:33–41
    [Google Scholar]
  63. 63. 
    Budzowska M, Graham TG, Sobeck A, Waga S, Walter JC. 2015. Regulation of the Rev1-pol ζ complex during bypass of a DNA interstrand cross-link. EMBO J 34:1971–85
    [Google Scholar]
  64. 64. 
    Kim H, Yang K, Dejsuphong D, D'Andrea AD. 2012. Regulation of Rev1 by the Fanconi anemia core complex. Nat. Struct. Mol. Biol. 19:164–70
    [Google Scholar]
  65. 65. 
    Berti M, Chaudhuri AR, Thangavel S, Gomathinayagam S, Kenig S et al. 2013. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat. Struct. Mol. Biol. 20:347–54
    [Google Scholar]
  66. 66. 
    Long DT, Raschle M, Joukov V, Walter JC. 2011. Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 333:84–87
    [Google Scholar]
  67. 67. 
    Kim H, D'Andrea AD. 2012. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev 26:1393–408
    [Google Scholar]
  68. 68. 
    Karanja KK, Cox SW, Duxin JP, Stewart SA, Campbell JL. 2012. DNA2 and EXO1 in replication-coupled, homology-directed repair and in the interplay between HDR and the FA/BRCA network. Cell Cycle 11:3983–96
    [Google Scholar]
  69. 69. 
    Cheng WH, Kusumoto R, Opresko PL, Sui X, Huang S et al. 2006. Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links. Nucleic Acids Res 34:2751–60
    [Google Scholar]
  70. 70. 
    Karanja KK, Lee EH, Hendrickson EA, Campbell JL. 2014. Preventing over-resection by DNA2 helicase/nuclease suppresses repair defects in Fanconi anemia cells. Cell Cycle 13:1540–50
    [Google Scholar]
  71. 71. 
    Rickman KA, Noonan RJ, Lach FP, Sridhar S, Wang AT et al. 2020. Distinct roles of BRCA2 in replication fork protection in response to hydroxyurea and DNA interstrand cross-links. Genes Dev 34:832–46
    [Google Scholar]
  72. 72. 
    Wang AT, Kim T, Wagner JE, Conti BA, Lach FP et al. 2015. A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol. Cell 59:478–90
    [Google Scholar]
  73. 73. 
    Shiraishi Y, Sandberg AA. 1978. Effects of mitomycin C on sister chromatid exchange in normal and Bloom's syndrome cells. Mutat. Res. 49:233–38
    [Google Scholar]
  74. 74. 
    Hirano S, Yamamoto K, Ishiai M, Yamazoe M, Seki M et al. 2005. Functional relationships of FANCC to homologous recombination, translesion synthesis, and BLM. EMBO J 24:418–27
    [Google Scholar]
  75. 75. 
    Deans AJ, West SC. 2009. FANCM connects the genome instability disorders Bloom's syndrome and Fanconi anemia. Mol. Cell 36:943–53
    [Google Scholar]
  76. 76. 
    Berezney R, Dubey DD, Huberman JA. 2000. Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108:471–84
    [Google Scholar]
  77. 77. 
    Huang J, Liu S, Bellani MA, Thazhathveetil AK, Ling C et al. 2013. The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand crosslinks. Mol. Cell 52:434–46
    [Google Scholar]
  78. 78. 
    Ling C, Huang J, Yan Z, Li Y, Ohzeki M et al. 2016. Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks. Cell Discov 2:16047
    [Google Scholar]
  79. 79. 
    Huang J, Zhang J, Bellani MA, Pokharel D, Gichimu J et al. 2019. Remodeling of interstrand crosslink proximal replisomes is dependent on ATR, FANCM, and FANCD2. Cell Rep 27:1794–808.e5
    [Google Scholar]
  80. 80. 
    Sparks JL, Chistol G, Gao AO, Raschle M, Larsen NB et al. 2019. The CMG helicase bypasses DNA-protein cross-links to facilitate their repair. Cell 176:167–81.e21
    [Google Scholar]
  81. 81. 
    Wasserman MR, Schauer GD, O'Donnell ME, Liu S. 2019. Replication fork activation is enabled by a single-stranded DNA gate in CMG helicase. Cell 178:600–11.e16
    [Google Scholar]
  82. 82. 
    Huang M, Kim JM, Shiotani B, Yang K, Zou L, D'Andrea AD. 2010. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol. Cell 39:259–68
    [Google Scholar]
  83. 83. 
    Xue Y, Li Y, Guo R, Ling C, Wang W. 2008. FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair. Hum. Mol. Genet. 17:1641–52
    [Google Scholar]
  84. 84. 
    Mutreja K, Krietsch J, Hess J, Ursich S, Berti M et al. 2018. ATR-mediated global fork slowing and reversal assist fork traverse and prevent chromosomal breakage at DNA interstrand cross-links. Cell Rep 24:2629–42.e5
    [Google Scholar]
  85. 85. 
    Gonzalez-Acosta D, Blanco-Romero E, Mutreja K, Llanos S, Miguez S et al. 2020. PrimPol primase mediates replication traverse of DNA interstrand crosslinks. bioRxiv 2020.05.19.104729. https://doi.org/10.1101/2020.05.19.104729
    [Crossref]
  86. 86. 
    Muller C, Calsou P, Salles B. 2000. The activity of the DNA-dependent protein kinase (DNA-PK) complex is determinant in the cellular response to nitrogen mustards. Biochimie 82:25–28
    [Google Scholar]
  87. 87. 
    Adamo A, Collis SJ, Adelman CA, Silva N, Horejsi Z et al. 2010. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol. Cell 39:25–35
    [Google Scholar]
  88. 88. 
    Pace P, Mosedale G, Hodskinson MR, Rosado IV, Sivasubramaniam M, Patel KJ. 2010. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 329:219–23
    [Google Scholar]
  89. 89. 
    Bunting SF, Callen E, Kozak ML, Kim JM, Wong N et al. 2012. BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol. Cell 46:125–35
    [Google Scholar]
  90. 90. 
    Garaycoechea JI, Crossan GP, Langevin F, Mulderrig L, Louzada S et al. 2018. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature 553:171–77
    [Google Scholar]
  91. 91. 
    Moiseeva TN, Bakkenist CJ. 2019. Dormant origin signaling during unperturbed replication. DNA Repair 81:102655
    [Google Scholar]
  92. 92. 
    Bizard AH, Hickson ID. 2014. The dissolution of double Holliday junctions. Cold Spring Harb. Perspect. Biol. 6:a016477
    [Google Scholar]
  93. 93. 
    Wang R, Wang S, Dhar A, Peralta C, Pavletich NP. 2020. DNA clamp function of the monoubiquitinated Fanconi anaemia ID complex. Nature 580:278–82
    [Google Scholar]
  94. 94. 
    Yuan F, El Hokayem J, Zhou W, Zhang Y. 2009. FANCI protein binds to DNA and interacts with FANCD2 to recognize branched structures. J. Biol. Chem. 284:24443–52
    [Google Scholar]
  95. 95. 
    Joo W, Xu G, Persky NS, Smogorzewska A, Rudge DG et al. 2011. Structure of the FANCI-FANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 333:312–16
    [Google Scholar]
  96. 96. 
    Ciccia A, Ling C, Coulthard R, Yan Z, Xue Y et al. 2007. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol. Cell 25:331–43
    [Google Scholar]
  97. 97. 
    Tao Y, Jin C, Li X, Qi S, Chu L et al. 2012. The structure of the FANCM-MHF complex reveals physical features for functional assembly. Nat. Commun. 3:782
    [Google Scholar]
  98. 98. 
    Kim JM, Kee Y, Gurtan A, D'Andrea AD. 2008. Cell cycle-dependent chromatin loading of the Fanconi anemia core complex by FANCM/FAAP24. Blood 111:5215–22
    [Google Scholar]
  99. 99. 
    Mosedale G, Niedzwiedz W, Alpi A, Perrina F, Pereira-Leal JB et al. 2005. The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nat. Struct. Mol. Biol. 12:763–71
    [Google Scholar]
  100. 100. 
    Singh TR, Saro D, Ali AM, Zheng XF, Du CH et al. 2010. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol. Cell 37:879–86
    [Google Scholar]
  101. 101. 
    Wang Y, Leung JW, Jiang Y, Lowery MG, Do H et al. 2013. FANCM and FAAP24 maintain genome stability via cooperative as well as unique functions. Mol. Cell 49:997–1009
    [Google Scholar]
  102. 102. 
    Yan Z, Delannoy M, Ling C, Daee D, Osman F et al. 2010. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol. Cell 37:865–78
    [Google Scholar]
  103. 103. 
    Gari K, Decaillet C, Stasiak AZ, Stasiak A, Constantinou A. 2008. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol. Cell 29:141–48
    [Google Scholar]
  104. 104. 
    Zhao Q, Saro D, Sachpatzidis A, Singh TR, Schlingman D et al. 2014. The MHF complex senses branched DNA by binding a pair of crossover DNA duplexes. Nat. Commun. 5:2987
    [Google Scholar]
  105. 105. 
    Fox D 3rd, Yan Z, Ling C, Zhao Y, Lee DY et al. 2014. The histone-fold complex MHF is remodeled by FANCM to recognize branched DNA and protect genome stability. Cell Res 24:560–75
    [Google Scholar]
  106. 106. 
    Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C et al. 2001. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7:249–62
    [Google Scholar]
  107. 107. 
    Howlett NG, Taniguchi T, Durkin SG, D'Andrea AD, Glover TW. 2005. The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum. Mol. Genet. 14:693–701
    [Google Scholar]
  108. 108. 
    Andreassen PR, D'Andrea AD, Taniguchi T. 2004. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev 18:1958–63
    [Google Scholar]
  109. 109. 
    Yuan F, Qian L, Zhao X, Liu JY, Song L et al. 2012. Fanconi anemia complementation group A (FANCA) protein has intrinsic affinity for nucleic acids with preference for single-stranded forms. J. Biol. Chem. 287:4800–7
    [Google Scholar]
  110. 110. 
    Wang S, Wang R, Peralta C, Yaseen A, Pavletich NP. 2020. Structure of the Fanconi Anemia Core–UBE2T complex poised to ubiquitinate bound FANCI–FANCD2. bioRxiv 854158. https://doi.org/10.1101/854158
    [Crossref]
  111. 111. 
    Huang Y, Leung JW, Lowery M, Matsushita N, Wang Y et al. 2014. Modularized functions of the Fanconi anemia core complex. Cell Rep 7:1849–57
    [Google Scholar]
  112. 112. 
    Huang M, Kennedy R, Ali AM, Moreau LA, Meetei AR et al. 2011. Human MutS and FANCM complexes function as redundant DNA damage sensors in the Fanconi anemia pathway. DNA Repair 10:1203–12
    [Google Scholar]
  113. 113. 
    Williams SA, Wilson JB, Clark AP, Mitson-Salazar A, Tomashevski A et al. 2011. Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Hum. Mol. Genet. 20:4395–410
    [Google Scholar]
  114. 114. 
    Ali AM, Pradhan A, Singh TR, Du C, Li J et al. 2012. FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway. Blood 119:3285–94
    [Google Scholar]
  115. 115. 
    van Twest S, Murphy VJ, Hodson C, Tan W, Swuec P et al. 2017. Mechanism of ubiquitination and deubiquitination in the Fanconi anemia pathway. Mol. Cell 65:247–59
    [Google Scholar]
  116. 116. 
    Alpi AF, Pace PE, Babu MM, Patel KJ. 2008. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 32:767–77
    [Google Scholar]
  117. 117. 
    Longerich S, San Filippo J, Liu D, Sung P 2009. FANCI binds branched DNA and is monoubiquitinated by UBE2T-FANCL. J. Biol. Chem. 284:23182–86
    [Google Scholar]
  118. 118. 
    Rajendra E, Oestergaard VH, Langevin F, Wang M, Dornan GL et al. 2014. The genetic and biochemical basis of FANCD2 monoubiquitination. Mol. Cell 54:858–69
    [Google Scholar]
  119. 119. 
    Shakeel S, Rajendra E, Alcon P, O'Reilly F, Chorev DS et al. 2019. Structure of the Fanconi anaemia monoubiquitin ligase complex. Nature 575:234–37
    [Google Scholar]
  120. 120. 
    Swuec P, Renault L, Borg A, Shah F, Murphy VJ et al. 2017. The FA core complex contains a homo-dimeric catalytic module for the symmetric mono-ubiquitination of FANCI-FANCD2. Cell Rep 18:611–23
    [Google Scholar]
  121. 121. 
    Polito D, Cukras S, Wang X, Spence P, Moreau L et al. 2014. The carboxyl terminus of FANCE recruits FANCD2 to the Fanconi anemia (FA) E3 ligase complex to promote the FA DNA repair pathway. J. Biol. Chem. 289:7003–10
    [Google Scholar]
  122. 122. 
    Nookala RK, Hussain S, Pellegrini L. 2007. Insights into Fanconi anaemia from the structure of human FANCE. Nucleic Acids Res 35:1638–48
    [Google Scholar]
  123. 123. 
    Alcon P, Shakeel S, Chen ZA, Rappsilber J, Patel KJ, Passmore LA. 2020. FANCD2-FANCI is a clamp stabilized on DNA by monoubiquitination of FANCD2 during DNA repair. Nat. Struct. Mol. Biol. 27:240–48
    [Google Scholar]
  124. 124. 
    Rennie ML, Lemonidis K, Arkinson C, Chaugule VK, Clarke M et al. 2020. Differential functions of FANCI and FANCD2 ubiquitination stabilize ID2 complex on DNA. EMBO Rep 21:e50133
    [Google Scholar]
  125. 125. 
    Sato K, Toda K, Ishiai M, Takata M, Kurumizaka H. 2012. DNA robustly stimulates FANCD2 monoubiquitylation in the complex with FANCI. Nucleic Acids Res 40:4553–61
    [Google Scholar]
  126. 126. 
    Liang CC, Li Z, Lopez-Martinez D, Nicholson WV, Venien-Bryan C, Cohn MA. 2016. The FANCD2-FANCI complex is recruited to DNA interstrand crosslinks before monoubiquitination of FANCD2. Nat. Commun. 7:12124
    [Google Scholar]
  127. 127. 
    Tan W, van Twest S, Leis A, Bythell-Douglas R, Murphy VJ et al. 2020. Monoubiquitination by the human Fanconi anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays. eLife 9:e54128
    [Google Scholar]
  128. 128. 
    Cheung RS, Castella M, Abeyta A, Gafken PR, Tucker N, Taniguchi T. 2017. Ubiquitination-linked phosphorylation of the FANCI S/TQ cluster contributes to activation of the Fanconi anemia I/D2 complex. Cell Rep 19:2432–40
    [Google Scholar]
  129. 129. 
    Nijman SM, Huang TT, Dirac AM, Brummelkamp TR, Kerkhoven RM et al. 2005. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17:331–39
    [Google Scholar]
  130. 130. 
    Cohn MA, Kowal P, Yang K, Haas W, Huang TT et al. 2007. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28:786–97
    [Google Scholar]
  131. 131. 
    Tan W, van Twest S, Murphy VJ, Deans AJ. 2020. ATR-mediated FANCI phosphorylation regulates both ubiquitination and deubiquitination of FANCD2. Front. . Cell Dev. Biol. 8:2
    [Google Scholar]
  132. 132. 
    Oestergaard VH, Langevin F, Kuiken HJ, Pace P, Niedzwiedz W et al. 2007. Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol. Cell 28:798–809
    [Google Scholar]
  133. 133. 
    Kim JM, Parmar K, Huang M, Weinstock DM, Ruit CA et al. 2009. Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev. Cell 16:314–20
    [Google Scholar]
  134. 134. 
    Matsushita N, Kitao H, Ishiai M, Nagashima N, Hirano S et al. 2005. A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol. Cell 19:841–47
    [Google Scholar]
  135. 135. 
    Gibbs-Seymour I, Oka Y, Rajendra E, Weinert BT, Passmore LA et al. 2015. Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage. Mol. Cell 57:150–64
    [Google Scholar]
  136. 136. 
    Husnjak K, Dikic I. 2012. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81:291–322
    [Google Scholar]
  137. 137. 
    Semlow DR, Zhang J, Budzowska M, Drohat AC, Walter JC. 2016. Replication-dependent unhooking of DNA interstrand cross-links by the NEIL3 glycosylase. Cell 167:498–511
    [Google Scholar]
  138. 138. 
    Liu M, Bandaru V, Bond JP, Jaruga P, Zhao X et al. 2010. The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. PNAS 107:4925–30
    [Google Scholar]
  139. 139. 
    Dewar JM, Walter JC. 2017. Mechanisms of DNA replication termination. Nat. Rev. Mol. Cell Biol. 18:507–16
    [Google Scholar]
  140. 140. 
    Atamna H, Cheung I, Ames BN 2000. A method for detecting abasic sites in living cells: age-dependent changes in base excision repair. PNAS 97:686–91
    [Google Scholar]
  141. 141. 
    Sejersted Y, Hildrestrand GA, Kunke D, Rolseth V, Krokeide SZ et al. 2011. Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia. PNAS 108:18802–7
    [Google Scholar]
  142. 142. 
    Massaad MJ, Zhou J, Tsuchimoto D, Chou J, Jabara H et al. 2016. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J. Clin. Investig. 126:4219–36
    [Google Scholar]
  143. 143. 
    Hodskinson MR, Bolner A, Sato K, Kamimae-Lanning AN, Rooijers K et al. 2020. Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms. Nature 579:603–8
    [Google Scholar]
  144. 144. 
    Dronkert ML, Kanaar R. 2001. Repair of DNA interstrand cross-links. Mutat. Res. 486:217–47
    [Google Scholar]
  145. 145. 
    Bessho T, Mu D, Sancar A. 1997. Initiation of DNA interstrand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5′ to the cross-linked base and removes a 22- to 28-nucleotide-long damage-free strand. Mol. Cell. Biol. 17:6822–30
    [Google Scholar]
  146. 146. 
    Ishiai M, Kimura M, Namikoshi K, Yamazoe M, Yamamoto K et al. 2004. DNA cross-link repair protein SNM1A interacts with PIAS1 in nuclear focus formation. Mol. Cell. Biol. 24:10733–41
    [Google Scholar]
  147. 147. 
    Kato N, Kawasoe Y, Williams H, Coates E, Roy U et al. 2017. Sensing and processing of DNA interstrand crosslinks by the mismatch repair pathway. Cell Rep 21:1375–85
    [Google Scholar]
  148. 148. 
    Williams HL, Gottesman ME, Gautier J. 2012. Replication-independent repair of DNA interstrand crosslinks. Mol. Cell 47:140–47
    [Google Scholar]
  149. 149. 
    Smeaton MB, Hlavin EM, McGregor Mason T, Noronha AM, Wilds CJ, Miller PS 2008. Distortion-dependent unhooking of interstrand cross-links in mammalian cell extracts. Biochemistry 47:9920–30
    [Google Scholar]
  150. 150. 
    Enoiu M, Jiricny J, Scharer OD. 2012. Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res 40:8953–64
    [Google Scholar]
  151. 151. 
    Vermeulen W, Fousteri M. 2013. Mammalian transcription-coupled excision repair. Cold Spring Harb. Perspect. Biol. 5:a012625
    [Google Scholar]
  152. 152. 
    Iyama T, Lee SY, Berquist BR, Gileadi O, Bohr VA et al. 2015. CSB interacts with SNM1A and promotes DNA interstrand crosslink processing. Nucleic Acids Res 43:247–58
    [Google Scholar]
  153. 153. 
    Lopez-Martinez D, Liang CC, Cohn MA. 2016. Cellular response to DNA interstrand crosslinks: the Fanconi anemia pathway. Cell Mol. Life Sci. 73:3097–114
    [Google Scholar]
  154. 154. 
    Cole RS. 1970. Light-induced cross-linking of DNA in the presence of a furocoumarin (psoralen). Studies with phage λ, Escherichia coli, and mouse leukemia cells. Biochim. Biophys. Acta 217:30–39
    [Google Scholar]
  155. 155. 
    Spielmann HP, Dwyer TJ, Hearst JE, Wemmer DE. 1995. Solution structures of psoralen monoadducted and cross-linked DNA oligomers by NMR spectroscopy and restrained molecular dynamics. Biochemistry 34:12937–53
    [Google Scholar]
  156. 156. 
    Gruppi F, Hejazi L, Christov PP, Krishnamachari S, Turesky RJ, Rizzo CJ. 2015. Characterization of nitrogen mustard formamidopyrimidine adduct formation of bis(2-chloroethyl)ethylamine with calf thymus DNA and a human mammary cancer cell line. Chem. Res. Toxicol. 28:1850–60
    [Google Scholar]
  157. 157. 
    Rink SM, Solomon MS, Taylor MJ, Rajur SB, McLaughlin LW, Hopkins PB. 1993. Covalent structure of a nitrogen mustard-induced DNA interstrand cross-link: an N7-to-N7 linkage of deoxyguanosine residues at the duplex sequence 5′-d(GNC). J. Am. Chem. Soc. 115:2551–57
    [Google Scholar]
  158. 158. 
    Osborne MR, Lawley PD. 1993. Alkylation of DNA by melphalan with special reference to adenine derivatives and adenine-guanine cross-linking. Chem. Biol. Interact. 89:49–60
    [Google Scholar]
  159. 159. 
    Fischhaber PL, Gall AS, Duncan JA, Hopkins PB. 1999. Direct demonstration in synthetic oligonucleotides that N,N′-bis(2-chloroethyl)-nitrosourea cross links N1 of deoxyguanosine to N3 of deoxycytidine on opposite strands of duplex DNA. Cancer Res 59:4363–68
    [Google Scholar]
  160. 160. 
    Wang M, McIntee EJ, Cheng G, Shi Y, Villalta PW, Hecht SS. 2000. Identification of DNA adducts of acetaldehyde. Chem. Res. Toxicol. 13:1149–57
    [Google Scholar]
  161. 161. 
    Cho YJ, Wang H, Kozekov ID, Kurtz AJ, Jacob J et al. 2006. Stereospecific formation of interstrand carbinolamine DNA cross-links by crotonaldehyde- and acetaldehyde-derived α-CH3-γ-OH-1,N2-propano-2′-deoxyguanosine adducts in the 5′-CpG-3′ sequence. Chem. Res. Toxicol. 19:195–208
    [Google Scholar]
  162. 162. 
    Price NE, Johnson KM, Wang J, Fekry MI, Wang Y, Gates KS. 2014. Interstrand DNA-DNA cross-link formation between adenine residues and abasic sites in duplex DNA. J. Am. Chem. Soc. 136:3483–90
    [Google Scholar]
  163. 163. 
    Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ. 2003. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J. Biol. Chem. 278:31426–33
    [Google Scholar]
  164. 164. 
    Kirchner JJ, Sigurdsson ST, Hopkins PB. 1992. Interstrand cross-linking of duplex DNA by nitrous acid: covalent structure of the dG-to-dG cross-link at the sequence 5′-CG. J. Am. Chem. Soc. 114:4021–27
    [Google Scholar]
  165. 165. 
    Wolkenberg SE, Boger DL. 2002. Mechanisms of in situ activation for DNA-targeting antitumor agents. Chem. Rev. 102:2477–95
    [Google Scholar]
  166. 166. 
    Zhao Q, He Q, Ding W, Tang M, Kang Q et al. 2008. Characterization of the azinomycin B biosynthetic gene cluster revealing a different iterative type I polyketide synthase for naphthoate biosynthesis. Chem. Biol. 15:693–705
    [Google Scholar]
  167. 167. 
    Armstrong RW, Salvati ME, Nguyen M. 1992. Novel interstrand cross-links induced by the antitumor antibiotic carzinophillin/azinomycin. B. J. Am. Chem. Soc. 114:3144–45
    [Google Scholar]
  168. 168. 
    Nougayrède JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E et al. 2006. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–51
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-080320-112510
Loading
/content/journals/10.1146/annurev-biochem-080320-112510
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error