Skip to main content
Log in

A Simple Determination of Trinitrotoluene (TNT) Based on Fluorescence Quenching of Rhodamine 110 with FRET Mechanism

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Sensitive and selective detection of nitroaromatic explosives is an important issue in regard to human health, environment, public security and military issues. In this study, a simple and sensitive fluorescence quenching − based assay utilizing Rhodamine 110 as fluorophore probe was developed for the determination of trinitrotoluene (TNT). This sensitive fluorometric method could measure the decrease in fluorescence of Rhodamine 110 (λex = 490 nm, λem = 521 nm) owing to the primary amine groups of Rhodamine 110 (different from other rhodamines) capable of donor-acceptor interaction with TNT. The resulting TNT-amine complex can strongly quench the fluorescence emission of Rhodamine 110 by fluorescence resonance energy transfer (FRET) which occurs as the excited Rhodamine 110 fluorophore (donor) transfers its energy to TNT (acceptor) by non-radiative dipole-dipole interaction. Fluorescence quenching varied linearly with TNT concentration, with LOD and the LOQ of 0.71 and 2.38 mg L− 1 TNT, respectively. Similar explosives, common soil ions, and possible camouflage materials were found not to interfere with the proposed method, offering significant advantages with its easy methodology, low-cost, sensitivity, and rapidity of analysis.

Graphical Abstract

FRET mechanism based on dye donor-TNT acceptor interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Akhgari F, Fattahi H, Oskoei YM (2015) Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives. Sens Actuators B Chem 221:867–878

    Article  CAS  Google Scholar 

  2. Singh S (2007) Sensors-An effective approach for the detection of explosives. J Hazard Mater 144:15–28

    Article  CAS  Google Scholar 

  3. Jamil AK, Izake EL, Sivanesan A, Fredericks PM (2015) Rapid detection of TNT in aqueous media by selective label free surface enhanced Raman spectroscopy. Talanta 134:732–738

    Article  CAS  Google Scholar 

  4. Larki A, Nasrabadi MR, Pourreza N (2015) UV-vis spectrophotometric determination of trinitrotoluene (TNT) with trioctylmethylammonium chloride as ion pair assisted and disperser agent after dispersive liquid–liquid microextraction. Forensic Sci Int 251:77–82

    Article  CAS  Google Scholar 

  5. Erçağ E, Üzer A, Apak R (2009) Selective spectrophotometric determination of TNT using a dicyclohexylamine-based colorimetric sensor. Talanta 78:772–780

    Article  Google Scholar 

  6. Aparna RS, Devi JA, Sachidanandan P, George S (2018) Polyethylene imine capped copper nanoclusters-fluorescent and colorimetric onsite sensor for the trace level detection of TNT. Sens Actuators B Chem 254:811–819

    Article  CAS  Google Scholar 

  7. Özcan Ç, Üzer A, Durmazel S, Apak R (2019) Colorimetric sensing of nitroaromatic energetic materials using surfactant-stabilized and dithiocarbamate-functionalized gold nanoparticles. Anal Lett 52:2794–2808

    Article  Google Scholar 

  8. Yang X, Wang J, Su D, Xia Q, Chai F, Wang C, Qu F (2014) Fluorescent detection of TNT and 4-nitrophenol by BSA Au nanoclusters. Dalton Trans 43:10057–10063

    Article  CAS  Google Scholar 

  9. Ban R, Zheng F, Zhang J (2015) A highly sensitive fluorescence assay for 2, 4, 6-trinitrotoluene using amine-capped silicon quantum dots as a probe. Anal Methods 7:1732–1737

    Article  CAS  Google Scholar 

  10. Hu T, Sang W, Chen K, Gu H, Ni Z, Liu S (2019) Simple and sensitive colorimetric detection of a trace amount of 2, 4, 6-trinitrotoluene (TNT) with QD multilayer-modified microchannel assays. Mater Chem Front 3:193–198

    Article  CAS  Google Scholar 

  11. Sağlam Ş, Üzer A, Tekdemir Y, Erçağ E, Apak R (2015) Electrochemical sensor for nitroaromatic type energetic materials using gold nanoparticles/poly (o-phenylenediamine–aniline) film modified glassy carbon electrode. Talanta 139:181–188

    Article  Google Scholar 

  12. Caygill JS, Collyer SD, Holmes JL, Davis F, Higson SP (2013) Electrochemical detection of TNT at cobalt phthalocyanine mediated screen-printed electrodes and application to detection of airborne vapours. Electroanalysis 25:2445–2452

    Article  CAS  Google Scholar 

  13. Liu M, Chen W (2013) Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Biosens Bioelectron 46:68–73

    Article  CAS  Google Scholar 

  14. Vourvopoulos G, Womble PC (2001) Pulsed fast/thermal neutron analysis: a technique for explosives detection. Talanta 54:459–468

    Article  CAS  Google Scholar 

  15. Lopez-Lopez M, Garcia-Ruiz C (2014) Infrared and Raman spectroscopy techniques applied to identification of explosives. TrAC-Trend Anal Chem 54:36–44

    Article  CAS  Google Scholar 

  16. Sun B, Li M, Zhang F, Zhong Y, Kang N, Lu W, Liu J (2010) The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique. Microchem J 95:293–297

    Article  CAS  Google Scholar 

  17. Najarro M, Morris MED, Staymates ME, Fletcher R, Gillen G (2012) Optimized thermal desorption for improved sensitivity in trace explosives detection by ion mobility spectrometry. Analyst 137:2614–2622

    Article  CAS  Google Scholar 

  18. Ghasemi F, Hormozi-Nezhad MR (2019) Determination and identification of nitroaromatic explosives by a double-emitter sensor array. Talanta 201:230–236

    Article  CAS  Google Scholar 

  19. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684

    Article  CAS  Google Scholar 

  20. Shibata A, Furukawa K, Abe H, Tsuneda S, Ito Y (2008) Rhodamine-based fluorogenic probe for imaging biological thiol. Bioorg Med Chem Lett 18:2246–2249

    Article  CAS  Google Scholar 

  21. Kolmakov K, Belov VN, Bierwagen J, Ringemann C, Müller V, Eggeling C, Hell SW (2010) Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy. Chem Eur J 16:158–166

    Article  CAS  Google Scholar 

  22. Sun YQ, Liu J, Lv X, Liu Y, Zhao Y, Guo W (2012) Rhodamine-inspired far‐red to near‐infrared dyes and their application as fluorescence probes. Angew Chem Int 51:7634–7636

    Article  CAS  Google Scholar 

  23. Savarese M, Aliberti A, De Santo I, Battista E, Causa F, Netti PA, Rega N (2012) Fluorescence lifetimes and quantum yields of rhodamine derivatives: new insights from theory and experiment. J Phys Chem A 116:7491–7497

    Article  CAS  Google Scholar 

  24. Zhang XF, Zhang Y, Liu L (2014) Fluorescence lifetimes and quantum yields of ten rhodamine derivatives: Structural effect on emission mechanism in different solvents. J Lumin 145:448–453

    Article  CAS  Google Scholar 

  25. Zhang XF, Zhang T, Shen SL, Miao JY, Zhao BX (2015) A ratiometric lysosomal pH probe based on the coumarin–rhodamine FRET system. RSC Adv 5:49115–49121

    Article  CAS  Google Scholar 

  26. Li Y, Qi S, Xia C, Xu Y, Duan G, Ge Y (2019) A FRET ratiometric fluorescent probe for detection of Hg2+ based on an imidazo [1, 2-a] pyridine-rhodamine system. Anal Chim Acta 1077:243–248

    Article  CAS  Google Scholar 

  27. Cai HH, Wang H, Wang J, Wei W, Yang PH, Cai J (2012) Naked eye detection of glutathione in living cells using rhodamine B-functionalized gold nanoparticles coupled with FRET. Dyes Pigm 92:778–782

    Article  CAS  Google Scholar 

  28. Li Q, Guo R, Lin W (2016) A fluorescence turn-on probe for thiols with a tunable dynamic range. J Fluoresc 26:1077–1081

    Article  CAS  Google Scholar 

  29. Gao D, Wang Z, Liu B, Ni L, Wu M, Zhang Z (2008) Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT. Anal Chem 80:8545–8553

    Article  CAS  Google Scholar 

  30. Föster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75

    Article  Google Scholar 

  31. Tu R, Liu B, Wang Z, Gao D, Wang F, Fang Q, Zhang Z (2008) Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Anal Chem 80:3458–3465

    Article  CAS  Google Scholar 

  32. Qi W, Xu M, Pang L, Liu Z, Zhang W, Majeed S, Xu G (2014) Electrochemiluminescence detection of TNT by resonance energy transfer through the formation of a TNT–amine complex. Chem Eur J 20:4829–4835

    Article  CAS  Google Scholar 

  33. Magde D, Wong R, Seybold PG (2002) Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields. Photochem Photobiol 75:327–334

    Article  CAS  Google Scholar 

  34. Fischer M, Georges J (1996) Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem Phys Lett 260:115–118

    Article  CAS  Google Scholar 

  35. Penzkofer A, Lu Y (1986) Fluorescence quenching of rhodamine 6G in methanol at high concentration. Chem Phys 103:399–405

    Article  CAS  Google Scholar 

  36. Wang L, Du W, Hu Z, Uvdal K, Li L, Huang W (2019) Hybrid rhodamine fluorophores in the visible/NIR region for biological imaging. Angew Chem Int Ed 58:14026–14043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Istanbul University-Cerrahpasa, Application & Research Center for the Measurement of Food Antioxidants, for sharing its research infrastructures. Author Furkan Burak ŞEN would like to thank Istanbul University-Cerrahpasa, Institute of Graduate Studies for the support given to his PhD thesis entitled ‘Development of new analytical methods for determination of nitro- and peroxide-type energetic materials’.

Author information

Authors and Affiliations

Authors

Contributions

Furkan Burak ŞEN: Experimental work, Investigation of optimal parameters. Mustafa BENER: Method optimization, Writing- Original draft preparation. Reşat APAK: Conceptualization, Writing-Reviewing and Editing.

Corresponding author

Correspondence to Reşat Apak.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şen, F.B., Bener, M. & Apak, R. A Simple Determination of Trinitrotoluene (TNT) Based on Fluorescence Quenching of Rhodamine 110 with FRET Mechanism. J Fluoresc 31, 989–997 (2021). https://doi.org/10.1007/s10895-021-02731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02731-2

Keywords

Navigation