1932

Abstract

Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-082520-125411
2021-06-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-082520-125411.html?itemId=/content/journals/10.1146/annurev-biochem-082520-125411&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Phillips DM. 1963. The presence of acetyl groups in histones. Biochem. J. 87:258–63
    [Google Scholar]
  2. 2. 
    Allfrey VG, Faulkner R, Mirsky AE 1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. PNAS 51:786–94
    [Google Scholar]
  3. 3. 
    Pogo BG, Allfrey VG, Mirsky AE 1966. RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. PNAS 55:805–12
    [Google Scholar]
  4. 4. 
    Kim SC, Sprung R, Chen Y, Xu Y, Ball H et al. 2006. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23:607–18
    [Google Scholar]
  5. 5. 
    Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M et al. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–40
    [Google Scholar]
  6. 6. 
    Kleff S, Andrulis ED, Anderson CW, Sternglanz R. 1995. Identification of a gene encoding a yeast histone H4 acetyltransferase. J. Biol. Chem. 270:24674–77
    [Google Scholar]
  7. 7. 
    Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG et al. 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–51
    [Google Scholar]
  8. 8. 
    Taunton J, Hassig CA, Schreiber SL. 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–11
    [Google Scholar]
  9. 9. 
    Imai S, Armstrong CM, Kaeberlein M, Guarente L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800
    [Google Scholar]
  10. 10. 
    Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. 1999. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–96
    [Google Scholar]
  11. 11. 
    Verdin E, Ott M. 2015. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16:258–64
    [Google Scholar]
  12. 12. 
    Strahl BD, Allis CD. 2000. The language of covalent histone modifications. Nature 403:41–45
    [Google Scholar]
  13. 13. 
    Kaczmarska Z, Ortega E, Goudarzi A, Huang H, Kim S et al. 2017. Structure of p300 in complex with acyl-CoA variants. Nat. Chem. Biol. 13:21–29
    [Google Scholar]
  14. 14. 
    Han Z, Wu H, Kim S, Yang X, Li Q et al. 2018. Revealing the protein propionylation activity of the histone acetyltransferase MOF (males absent on the first). J. Biol. Chem. 293:3410–20
    [Google Scholar]
  15. 15. 
    Ringel AE, Wolberger C. 2016. Structural basis for acyl-group discrimination by human Gcn5L2. Acta Crystallogr. D Struct. Biol. 72:841–48
    [Google Scholar]
  16. 16. 
    Kosciuk T, Price IR, Zhang X, Zhu C, Johnson KN et al. 2020. NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle. Nat. Commun. 11:1067
    [Google Scholar]
  17. 17. 
    Wei W, Liu X, Chen J, Gao S, Lu L et al. 2017. Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription. Cell Res 27:898–915
    [Google Scholar]
  18. 18. 
    Aramsangtienchai P, Spiegelman NA, He B, Miller SP, Dai L et al. 2016. HDAC8 catalyzes the hydrolysis of long chain fatty acyl lysine. ACS Chem. Biol. 11:2685–92
    [Google Scholar]
  19. 19. 
    Cao J, Sun L, Aramsangtienchai P, Spiegelman NA, Zhang X et al. 2019. HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. PNAS 116:5487–92
    [Google Scholar]
  20. 20. 
    Gai W, Li H, Jiang H, Long Y, Liu D. 2016. Crystal structures of SIRT3 reveal that the α2-α3 loop and α3-helix affect the interaction with long-chain acyl lysine. FEBS Lett 590:3019–28
    [Google Scholar]
  21. 21. 
    Teng Y-B, Jing H, Aramsangtienchai P, He B, Khan S et al. 2015. Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies. Sci. Rep. 5:8529
    [Google Scholar]
  22. 22. 
    Du JT, Zhou YY, Su XY, Yu JJ, Khan S et al. 2011. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–9
    [Google Scholar]
  23. 23. 
    Jiang H, Khan S, Wang Y, Charron G, He B et al. 2013. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110–13
    [Google Scholar]
  24. 24. 
    Tong Z, Wang M, Wang Y, Kim DD, Grenier JK et al. 2017. SIRT7 is an RNA-activated protein lysine deacylase. ACS Chem. Biol. 12:300–10
    [Google Scholar]
  25. 25. 
    Li Y, Sabari BR, Panchenko T, Wen H, Zhao D et al. 2016. Molecular coupling of histone crotonylation and active transcription by AF9 YEATS domain. Mol. Cell 62:181–93
    [Google Scholar]
  26. 26. 
    Andrews FH, Shinsky SA, Shanle EK, Bridgers JB, Gest A et al. 2016. The Taf14 YEATS domain is a reader of histone crotonylation. Nat. Chem. Biol. 12:396–98
    [Google Scholar]
  27. 27. 
    Zhao D, Guan H, Zhao S, Mi W, Wen H et al. 2016. YEATS2 is a selective histone crotonylation reader. Cell Res 26:629–32
    [Google Scholar]
  28. 28. 
    Xiong X, Panchenko T, Yang S, Zhao S, Yan P et al. 2016. Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2. Nat. Chem. Biol. 12:1111–18
    [Google Scholar]
  29. 29. 
    Friedmann DR, Marmorstein R. 2013. Structure and mechanism of non-histone protein acetyltransferase enzymes. FEBS J 280:5570–81
    [Google Scholar]
  30. 30. 
    Akella JS, Wloga D, Kim J, Starostina NG, Lyons-Abbott S et al. 2010. MEC-17 is an α-tubulin acetyltransferase. Nature 467:218–22
    [Google Scholar]
  31. 31. 
    Yang XJ, Seto E. 2008. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9:206–18
    [Google Scholar]
  32. 32. 
    Seto E, Yoshida M. 2014. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6:a018713
    [Google Scholar]
  33. 33. 
    Hai Y, Shinsky SA, Porter NJ, Christianson DW. 2017. Histone deacetylase 10 structure and molecular function as a polyamine deacetylase. Nat. Commun. 8:15368
    [Google Scholar]
  34. 34. 
    Kutil Z, Novakova Z, Meleshin M, Mikesova J, Schutkowski M, Barinka C. 2018. Histone deacetylase 11 is a fatty-acid deacylase. ACS Chem. Biol. 13:685–93
    [Google Scholar]
  35. 35. 
    Moreno-Yruela C, Galleano I, Madsen AS, Olsen CA. 2018. Histone deacetylase 11 is an ε-N-myristoyllysine hydrolase. Cell Chem. Biol. 25:849–56.e8
    [Google Scholar]
  36. 36. 
    Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P et al. 2007. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. PNAS 104:17335–40
    [Google Scholar]
  37. 37. 
    Tanner KG, Landry J, Sternglanz R, Denu JM 2000. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. PNAS 97:14178–82
    [Google Scholar]
  38. 38. 
    Sauve AA, Celic I, Avalos J, Deng H, Boeke JD, Schramm VL. 2001. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40:15456–63
    [Google Scholar]
  39. 39. 
    Yoshino J, Baur JA, Imai SI. 2018. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab 27:513–28
    [Google Scholar]
  40. 40. 
    Zaware N, Zhou MM. 2019. Bromodomain biology and drug discovery. Nat. Struct. Mol. Biol. 26:870–79
    [Google Scholar]
  41. 41. 
    Li Y, Wen H, Xi Y, Tanaka K, Wang H et al. 2014. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 159:558–71
    [Google Scholar]
  42. 42. 
    Wan L, Wen H, Li Y, Lyu J, Xi Y et al. 2017. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature 543:265–69
    [Google Scholar]
  43. 43. 
    Lange M, Kaynak B, Forster UB, Tönjes M, Fischer JJ et al. 2008. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev 22:2370–84
    [Google Scholar]
  44. 44. 
    Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou MM. 2010. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466:258–62
    [Google Scholar]
  45. 45. 
    Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M et al. 2012. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–18
    [Google Scholar]
  46. 46. 
    Mohrin M, Shin J, Liu Y, Brown K, Luo H et al. 2015. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347:1374–77
    [Google Scholar]
  47. 47. 
    Shin J, He M, Liu Y, Paredes S, Villanova L et al. 2013. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep 5:654–65
    [Google Scholar]
  48. 48. 
    Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. 2006. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 20:1075–80
    [Google Scholar]
  49. 49. 
    Xu Y, Vakoc CR. 2017. Targeting cancer cells with BET bromodomain inhibitors. Cold Spring Harb. Perspect. Med. 7:a026674
    [Google Scholar]
  50. 50. 
    Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. 2017. A phase separation model for transcriptional control. Cell 169:13–23
    [Google Scholar]
  51. 51. 
    Boija A, Klein IA, Sabari BR, Dall'Agnese A, Coffey EL et al. 2018. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175:1842–55.e16
    [Google Scholar]
  52. 52. 
    Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL et al. 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361:eaar3958
    [Google Scholar]
  53. 53. 
    Lu H, Yu D, Hansen AS, Ganguly S, Liu R et al. 2018. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558:318–23
    [Google Scholar]
  54. 54. 
    Nair SJ, Yang L, Meluzzi D, Oh S, Yang F et al. 2019. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 26:193–203
    [Google Scholar]
  55. 55. 
    Chowdhary S, Kainth AS, Pincus D, Gross DS 2019. Heat shock factor 1 drives intergenic association of its target gene loci upon heat shock. Cell Rep 26:18–28.e5
    [Google Scholar]
  56. 56. 
    Guo C, Che Z, Yue J, Xie P, Hao S et al. 2020. ENL initiates multivalent phase separation of the super elongation complex (SEC) in controlling rapid transcriptional activation. Sci. Adv. 6:eaay4858
    [Google Scholar]
  57. 57. 
    Ogiwara H, Ui A, Otsuka A, Satoh H, Yokomi I et al. 2011. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene 30:2135–46
    [Google Scholar]
  58. 58. 
    Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR et al. 2006. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–29
    [Google Scholar]
  59. 59. 
    Mao Z, Hine C, Tian X, Van Meter M, Au M et al. 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332:1443–46
    [Google Scholar]
  60. 60. 
    Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L et al. 2013. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol. Cell 51:454–68
    [Google Scholar]
  61. 61. 
    Onn L, Portillo M, Ilic S, Cleitman G, Stein D et al. 2020. SIRT6 is a DNA double-strand break sensor. eLife 9:e51636
    [Google Scholar]
  62. 62. 
    Peng L, Ling H, Yuan Z, Fang B, Bloom G et al. 2012. SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60. Mol. Cell. Biol. 32:2823–36
    [Google Scholar]
  63. 63. 
    Yuan J, Luo K, Liu T, Lou Z. 2012. Regulation of SIRT1 activity by genotoxic stress. Genes Dev 26:791–96
    [Google Scholar]
  64. 64. 
    Zannini L, Buscemi G, Kim JE, Fontanella E, Delia D 2012. DBC1 phosphorylation by ATM/ATR inhibits SIRT1 deacetylase in response to DNA damage. J. Mol. Cell Biol. 4:294–303
    [Google Scholar]
  65. 65. 
    Magni M, Ruscica V, Buscemi G, Kim JE, Nachimuthu BT et al. 2014. Chk2 and REGγ-dependent DBC1 regulation in DNA damage induced apoptosis. Nucleic Acids Res 42:13150–60
    [Google Scholar]
  66. 66. 
    Park JH, Lee SW, Yang SW, Yoo HM, Park JM et al. 2014. Modification of DBC1 by SUMO2/3 is crucial for p53-mediated apoptosis in response to DNA damage. Nat. Commun. 5:5483
    [Google Scholar]
  67. 67. 
    Conrad E, Polonio-Vallon T, Meister M, Matt S, Bitomsky N et al. 2016. HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism. Cell Death Differ 23:110–22
    [Google Scholar]
  68. 68. 
    Magni M, Buscemi G, Maita L, Peng L, Chan SY et al. 2019. TSPYL2 is a novel regulator of SIRT1 and p300 activity in response to DNA damage. Cell Death Differ 26:918–31
    [Google Scholar]
  69. 69. 
    Zheng H, Yang L, Peng L, Izumi V, Koomen J et al. 2013. hMOF acetylation of DBC1/CCAR2 prevents binding and inhibition of SirT1. Mol. Cell. Biol. 33:4960–70
    [Google Scholar]
  70. 70. 
    Zhao M, Geng R, Guo X, Yuan R, Zhou X et al. 2017. PCAF/GCN5-mediated acetylation of RPA1 promotes nucleotide excision repair. Cell Rep 20:1997–2009
    [Google Scholar]
  71. 71. 
    Jarrett SG, Carter KM, Bautista RM, He D, Wang C, D'Orazio JA. 2018. Sirtuin 1-mediated deacetylation of XPA DNA repair protein enhances its interaction with ATR protein and promotes cAMP-induced DNA repair of UV damage. J. Biol. Chem. 293:19025–37
    [Google Scholar]
  72. 72. 
    Yasuda T, Kagawa W, Ogi T, Kato TA, Suzuki T et al. 2018. Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites. PLOS Genet 14:e1007277
    [Google Scholar]
  73. 73. 
    Jeong J, Juhn K, Lee H, Kim SH, Min BH et al. 2007. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp. Mol. Med. 39:8–13
    [Google Scholar]
  74. 74. 
    Li K, Casta A, Wang R, Lozada E, Fan W et al. 2008. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J. Biol. Chem. 283:7590–98
    [Google Scholar]
  75. 75. 
    Yuan Z, Zhang X, Sengupta N, Lane WS, Seto E. 2007. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol. Cell 27:149–62
    [Google Scholar]
  76. 76. 
    Weinert BT, Moustafa T, Iesmantavicius V, Zechner R, Choudhary C. 2015. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions. EMBO J 34:2620–32
    [Google Scholar]
  77. 77. 
    Scott I, Webster BR, Li JH, Sack MN. 2012. Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochem. J. 443:655–61
    [Google Scholar]
  78. 78. 
    Mao B, Hu F, Cheng J, Wang P, Xu M et al. 2014. SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene 33:1468–74
    [Google Scholar]
  79. 79. 
    Andersen JL, Thompson JW, Lindblom KR, Johnson ES, Yang CS et al. 2011. A biotin switch-based proteomics approach identifies 14–3–3ζ as a target of Sirt1 in the metabolic regulation of caspase-2. Mol. Cell 43:834–42
    [Google Scholar]
  80. 80. 
    Qiang L, Wang L, Kon N, Zhao W, Lee S et al. 2012. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150:620–32
    [Google Scholar]
  81. 81. 
    Inuzuka H, Gao D, Finley LW, Yang W, Wan L et al. 2012. Acetylation-dependent regulation of Skp2 function. Cell 150:179–93
    [Google Scholar]
  82. 82. 
    Santos-Barriopedro I, Bosch-Presegué L, Marazuela-Duque A, de la Torre C, Colomer C et al. 2018. SIRT6-dependent cysteine monoubiquitination in the PRE-SET domain of Suv39h1 regulates the NF-κB pathway. Nat. Commun. 9:101
    [Google Scholar]
  83. 83. 
    Fatoba ST, Tognetti S, Berto M, Leo E, Mulvey CM et al. 2013. Human SIRT1 regulates DNA binding and stability of the Mcm10 DNA replication factor via deacetylation. Nucleic Acids Res 41:4065–79
    [Google Scholar]
  84. 84. 
    Chen S, Seiler J, Santiago-Reichelt M, Felbel K, Grummt I, Voit R. 2013. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol. Cell 52:303–13
    [Google Scholar]
  85. 85. 
    Iyer-Bierhoff A, Krogh N, Tessarz P, Ruppert T, Nielsen H, Grummt I. 2018. SIRT7-dependent deacetylation of fibrillarin controls histone H2A methylation and rRNA synthesis during the cell cycle. Cell Rep 25:2946–54.e5
    [Google Scholar]
  86. 86. 
    Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P et al. 2011. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 During tumorigenesis and cardiac hypertrophy. Sci. Signal 4:ra46
    [Google Scholar]
  87. 87. 
    Jiang W, Wang S, Xiao M, Lin Y, Zhou L et al. 2011. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol. Cell 43:33–44
    [Google Scholar]
  88. 88. 
    North BJ, Rosenberg MA, Jeganathan KB, Hafner AV, Michan S et al. 2014. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J 33:1438–53
    [Google Scholar]
  89. 89. 
    Suematsu T, Li Y, Kojima H, Nakajima K, Oshimura M, Inoue T. 2014. Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/anaphase transition. Biochem. Biophys. Res. Commun. 453:588–94
    [Google Scholar]
  90. 90. 
    Zhang Y, Zhou F, Bai M, Liu Y, Zhang L et al. 2019. The pivotal role of protein acetylation in linking glucose and fatty acid metabolism to β-cell function. Cell Death Dis 10:66
    [Google Scholar]
  91. 91. 
    Luo J, Nikolaev AY, Imai S, Chen D, Su F et al. 2001. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107:137–48
    [Google Scholar]
  92. 92. 
    Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA et al. 2001. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–59
    [Google Scholar]
  93. 93. 
    Ghosh S, Wong SK, Jiang Z, Liu B, Wang Y et al. 2018. Haploinsufficiency of Trp53 dramatically extends the lifespan of Sirt6-deficient mice. eLife 7:e32127
    [Google Scholar]
  94. 94. 
    Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T et al. 2008. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 102:703–10
    [Google Scholar]
  95. 95. 
    Zhao J, Wozniak A, Adams A, Cox J, Vittal A et al. 2019. SIRT7 regulates hepatocellular carcinoma response to therapy by altering the p53-dependent cell death pathway. J. Exp. Clin. Cancer Res. 38:252
    [Google Scholar]
  96. 96. 
    Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki S et al. 2007. SIRT1 inhibits transforming growth factor β-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J. Biol. Chem. 282:151–58
    [Google Scholar]
  97. 97. 
    Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K et al. 2008. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456:269–73
    [Google Scholar]
  98. 98. 
    Guarani V, Deflorian G, Franco CA, Krüger M, Phng LK et al. 2011. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473:234–38
    [Google Scholar]
  99. 99. 
    Lin R, Tao R, Gao X, Li T, Zhou X et al. 2013. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol. Cell 51:506–18
    [Google Scholar]
  100. 100. 
    Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C et al. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–28
    [Google Scholar]
  101. 101. 
    Foteinou PT, Venkataraman A, Francey LJ, Anafi RC, Hogenesch JB, Doyle FJ 3rd 2018. Computational and experimental insights into the circadian effects of SIRT1. PNAS 115:11643–48
    [Google Scholar]
  102. 102. 
    Kaushik S, Cuervo AM. 2018. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19:365–81
    [Google Scholar]
  103. 103. 
    Zhang Y, Xu YY, Yao CB, Li JT, Zhao XN et al. 2017. Acetylation targets HSD17B4 for degradation via the CMA pathway in response to estrone. Autophagy 13:538–53
    [Google Scholar]
  104. 104. 
    Lv L, Li D, Zhao D, Lin R, Chu Y et al. 2011. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 42:719–30
    [Google Scholar]
  105. 105. 
    Li L, Fang R, Liu B, Shi H, Wang Y et al. 2016. Deacetylation of tumor-suppressor MST1 in Hippo pathway induces its degradation through HBXIP-elevated HDAC6 in promotion of breast cancer growth. Oncogene 35:4048–57
    [Google Scholar]
  106. 106. 
    Bouras T, Fu M, Sauve AA, Wang F, Quong AA et al. 2005. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J. Biol. Chem. 280:10264–76
    [Google Scholar]
  107. 107. 
    Seo KS, Park JH, Heo JY, Jing K, Han J et al. 2015. SIRT2 regulates tumour hypoxia response by promoting HIF-1α hydroxylation. Oncogene 34:1354–62
    [Google Scholar]
  108. 108. 
    Li Y, Xu W, McBurney MW, Longo VD. 2008. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8:38–48
    [Google Scholar]
  109. 109. 
    Zhang J. 2007. The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J. Biol. Chem. 282:34356–64
    [Google Scholar]
  110. 110. 
    Hong S, Zhao B, Lombard DB, Fingar DC, Inoki K. 2014. Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J. Biol. Chem. 289:13132–41
    [Google Scholar]
  111. 111. 
    Igarashi M, Guarente L. 2016. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell 166:436–50
    [Google Scholar]
  112. 112. 
    Qiang L, Lin HV, Kim-Muller JY, Welch CL, Gu W, Accili D. 2011. Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab 14:758–67
    [Google Scholar]
  113. 113. 
    Snider NT, Leonard JM, Kwan R, Griggs NW, Rui L, Omary MB. 2013. Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation. J. Cell Biol. 200:241–47
    [Google Scholar]
  114. 114. 
    Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B et al. 2010. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12:654–61
    [Google Scholar]
  115. 115. 
    Shafqat N, Turnbull A, Zschocke J, Oppermann U, Yue WW. 2010. Crystal structures of human HMG-CoA synthase isoforms provide insights into inherited ketogenesis disorders and inhibitor design. J. Mol. Biol. 398:497–506
    [Google Scholar]
  116. 116. 
    Yu W, Dittenhafer-Reed KE, Denu JM 2012. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J. Biol. Chem. 287:14078–86
    [Google Scholar]
  117. 117. 
    Bharathi SS, Zhang Y, Mohsen AW, Uppala R, Balasubramani M et al. 2013. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J. Biol. Chem. 288:33837–47
    [Google Scholar]
  118. 118. 
    Zhang YK, Qu YY, Lin Y, Wu XH, Chen HZ et al. 2017. Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients. Nat. Commun. 8:464
    [Google Scholar]
  119. 119. 
    Tsusaka T, Guo T, Yagura T, Inoue T, Yokode M et al. 2014. Deacetylation of phosphoglycerate mutase in its distinct central region by SIRT2 down-regulates its enzymatic activity. Genes Cells 19:766–77
    [Google Scholar]
  120. 120. 
    Xu Y, Li F, Lv L, Li T, Zhou X et al. 2014. Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase. Cancer Res 74:3630–42
    [Google Scholar]
  121. 121. 
    Wang Y, Wei Z, Liu L, Cheng Z, Lin Y et al. 2005. Crystal structure of human B-type phosphoglycerate mutase bound with citrate. Biochem. Biophys. Res. Commun. 331:1207–15
    [Google Scholar]
  122. 122. 
    Hallows WC, Yu W, Denu JM 2012. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J. Biol. Chem. 287:3850–58
    [Google Scholar]
  123. 123. 
    Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL et al. 2014. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J 33:1304–20
    [Google Scholar]
  124. 124. 
    Wei Z, Song J, Wang G, Cui X, Zheng J et al. 2018. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat. Commun. 9:4468
    [Google Scholar]
  125. 125. 
    Hallows WC, Lee S, Denu JM 2006. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. PNAS 103:10230–35
    [Google Scholar]
  126. 126. 
    Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E 2006. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. PNAS 103:10224–29
    [Google Scholar]
  127. 127. 
    Gulick AM, Starai VJ, Horswill AR, Homick KM, Escalante-Semerena JC. 2003. The 1.75 Å crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry 42:2866–73
    [Google Scholar]
  128. 128. 
    Reger AS, Carney JM, Gulick AM. 2007. Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase. Biochemistry 46:6536–46
    [Google Scholar]
  129. 129. 
    Bheda P, Jing H, Wolberger C, Lin H. 2016. The substrate specificity of sirtuins. Annu. Rev. Biochem. 85:405–29
    [Google Scholar]
  130. 130. 
    Kosciuk T, Wang M, Hong JY, Lin H. 2019. Updates on the epigenetic roles of sirtuins. Curr. Opin. Chem. Biol. 51:18–29
    [Google Scholar]
  131. 131. 
    Revollo JR, Li X. 2013. The ways and means that fine tune Sirt1 activity. Trends Biochem. Sci. 38:160–67
    [Google Scholar]
  132. 132. 
    Guarente L. 2000. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14:1021–26
    [Google Scholar]
  133. 133. 
    Williamson DH, Lund P, Krebs HA. 1967. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103:514–27
    [Google Scholar]
  134. 134. 
    Schmidt MT, Smith BC, Jackson MD, Denu JM. 2004. Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J. Biol. Chem. 279:40122–29
    [Google Scholar]
  135. 135. 
    Anderson KA, Madsen AS, Olsen CA, Hirschey MD. 2017. Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochim. Biophys. Acta Bioenerg 1858:991–98
    [Google Scholar]
  136. 136. 
    Kang H, Oka S, Lee D-Y, Park J, Aponte AM et al. 2017. Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins. Nat. Commun. 8:15560
    [Google Scholar]
  137. 137. 
    Hong S, Moreno-Navarrete JM, Wei X, Kikukawa Y, Tzameli I et al. 2015. Nicotinamide N-methyltransferase regulates hepatic nutrient metabolism through Sirt1 protein stabilization. Nat. Med. 21:887–94
    [Google Scholar]
  138. 138. 
    Kang H, Jung J-W, Kim MK, Chung JH. 2009. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLOS ONE 4:e6611
    [Google Scholar]
  139. 139. 
    Choi SE, Kwon S, Seok S, Xiao Z, Lee KW et al. 2017. Obesity-linked phosphorylation of SIRT1 by casein kinase 2 inhibits its nuclear localization and promotes fatty liver. Mol. Cell. Biol. 37:e00006–17
    [Google Scholar]
  140. 140. 
    Guo X, Williams JG, Schug TT, Li X 2010. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J. Biol. Chem. 285:13223–32
    [Google Scholar]
  141. 141. 
    Ford J, Ahmed S, Allison S, Jiang M, Milner J. 2008. JNK2-dependent regulation of SIRT1 protein stability. Cell Cycle 7:3091–97
    [Google Scholar]
  142. 142. 
    Nasrin N, Kaushik VK, Fortier E, Wall D, Pearson KJ et al. 2009. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLOS ONE 4:e8414
    [Google Scholar]
  143. 143. 
    Vinciguerra M, Santini MP, Martinez C, Pazienza V, Claycomb WC et al. 2012. mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell 11:139–49
    [Google Scholar]
  144. 144. 
    Gao Z, Zhang J, Kheterpal I, Kennedy N, Davis RJ, Ye J. 2011. Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J. Biol. Chem. 286:22227–34
    [Google Scholar]
  145. 145. 
    Back JH, Rezvani HR, Zhu Y, Guyonnet-Duperat V, Athar M et al. 2011. Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent inhibition of sirtuin 1. J. Biol. Chem. 286:19100–8
    [Google Scholar]
  146. 146. 
    Gerhart-Hines Z, Dominy JE Jr., Blättler SM, Jedrychowski MP, Banks AS et al. 2011. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+. Mol. Cell 44:851–63
    [Google Scholar]
  147. 147. 
    Rodgers JT, Puigserver P 2007. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. PNAS 104:12861–66
    [Google Scholar]
  148. 148. 
    Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH et al. 2007. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J 26:1913–23
    [Google Scholar]
  149. 149. 
    Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T et al. 2004. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429:771–76
    [Google Scholar]
  150. 150. 
    Walker AK, Yang F, Jiang K, Ji JY, Watts JL et al. 2010. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 24:1403–17
    [Google Scholar]
  151. 151. 
    Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J et al. 2010. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 285:33959–70
    [Google Scholar]
  152. 152. 
    Dong S, Jia C, Zhang S, Fan G, Li Y et al. 2013. The REGγ proteasome regulates hepatic lipid metabolism through inhibition of autophagy. Cell Metab 18:380–91
    [Google Scholar]
  153. 153. 
    Liu J, Wang Y, Li L, Zhou L, Wei H et al. 2013. Site-specific acetylation of the proteasome activator REGγ directs its heptameric structure and functions. J. Biol. Chem. 288:16567–78
    [Google Scholar]
  154. 154. 
    Kim JE, Chen J, Lou Z 2008. DBC1 is a negative regulator of SIRT1. Nature 451:583–86
    [Google Scholar]
  155. 155. 
    Zhao W, Kruse JP, Tang Y, Jung SY, Qin J, Gu W. 2008. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451:587–90
    [Google Scholar]
  156. 156. 
    Escande C, Chini CC, Nin V, Dykhouse KM, Novak CM et al. 2010. Deleted in breast cancer–1 regulates SIRT1 activity and contributes to high-fat diet–induced liver steatosis in mice. J. Clin. Investig. 120:545–58
    [Google Scholar]
  157. 157. 
    Kwon J, Lee S, Kim YN, Lee IH. 2019. Deacetylation of CHK2 by SIRT1 protects cells from oxidative stress-dependent DNA damage response. Exp. Mol. Med. 51:36
    [Google Scholar]
  158. 158. 
    Nin V, Escande C, Chini CC, Giri S, Camacho-Pereira J et al. 2012. Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase. J. Biol. Chem. 287:23489–501
    [Google Scholar]
  159. 159. 
    Lau AW, Liu P, Inuzuka H, Gao D. 2014. SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am. J. Cancer Res. 4:245–55
    [Google Scholar]
  160. 160. 
    Hubbard BP, Loh C, Gomes AP, Li J, Lu Q et al. 2013. Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism. Cell Cycle 12:2233–40
    [Google Scholar]
  161. 161. 
    Atkins KM, Thomas LL, Barroso-González J, Thomas L, Auclair S et al. 2014. The multifunctional sorting protein PACS-2 regulates SIRT1-mediated deacetylation of p53 to modulate p21-dependent cell-cycle arrest. Cell Rep 8:1545–57
    [Google Scholar]
  162. 162. 
    Krzysiak TC, Thomas L, Choi YJ, Auclair S, Qian Y et al. 2018. An insulin-responsive sensor in the SIRT1 disordered region binds DBC1 and PACS-2 to control enzyme activity. Mol. Cell 72:985–98.e7
    [Google Scholar]
  163. 163. 
    Nemoto S, Fergusson MM, Finkel T. 2004. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306:2105–8
    [Google Scholar]
  164. 164. 
    Noriega LG, Feige JN, Canto C, Yamamoto H, Yu J et al. 2011. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep 12:1069–76
    [Google Scholar]
  165. 165. 
    Fusco S, Ripoli C, Podda MV, Ranieri SC, Leone L et al. 2012. A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction. PNAS 109:621–26
    [Google Scholar]
  166. 166. 
    Xiong S, Salazar G, Patrushev N, Alexander RW. 2011. FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J. Biol. Chem. 286:5289–99
    [Google Scholar]
  167. 167. 
    Okazaki M, Iwasaki Y, Nishiyama M, Taguchi T, Tsugita M et al. 2010. PPARβ/δ regulates the human SIRT1 gene transcription via Sp1. Endocr. J. 57:403–13
    [Google Scholar]
  168. 168. 
    Han L, Zhou R, Niu J, McNutt MA, Wang P, Tong T 2010. SIRT1 is regulated by a PPARγ-SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res 38:7458–71
    [Google Scholar]
  169. 169. 
    Wang C, Chen L, Hou X, Li Z, Kabra N et al. 2006. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat. Cell Biol. 8:1025–31
    [Google Scholar]
  170. 170. 
    Yuan F, Liu L, Lei Y, Tang P. 2017. p53 inhibits the upregulation of sirtuin 1 expression induced by c-Myc. Oncol. Lett. 14:4396–402
    [Google Scholar]
  171. 171. 
    Menssen A, Hydbring P, Kapelle K, Vervoorts J, Diebold J et al. 2012. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. PNAS 109:E187–96
    [Google Scholar]
  172. 172. 
    Mao B, Zhao G, Lv X, Chen HZ, Xue Z et al. 2011. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int. J. Biochem. Cell Biol. 43:1573–81
    [Google Scholar]
  173. 173. 
    Abdelmohsen K, Pullmann R Jr., Lal A, Kim HH, Galban S et al. 2007. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol. Cell 25:543–57
    [Google Scholar]
  174. 174. 
    Yamakuchi M, Ferlito M, Lowenstein CJ 2008. miR-34a repression of SIRT1 regulates apoptosis. PNAS 105:13421–26
    [Google Scholar]
  175. 175. 
    Cha Y, Han MJ, Cha HJ, Zoldan J, Burkart A et al. 2017. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat. Cell Biol. 19:445–56
    [Google Scholar]
  176. 176. 
    Jing E, Gesta S, Kahn CR. 2007. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab 6:105–14
    [Google Scholar]
  177. 177. 
    Wang F, Tong Q. 2009. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARγ. Mol. Biol. Cell 20:801–8
    [Google Scholar]
  178. 178. 
    Watanabe H, Inaba Y, Kimura K, Matsumoto M, Kaneko S et al. 2018. Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein. Nat. Commun. 9:30
    [Google Scholar]
  179. 179. 
    Wang F, Nguyen M, Qin FX, Tong Q. 2007. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6:505–14
    [Google Scholar]
  180. 180. 
    Lemos V, de Oliveira RM, Naia L, Szegö É, Ramos E et al. 2017. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Hum. Mol. Genet. 26:4105–17
    [Google Scholar]
  181. 181. 
    Liu G, Park SH, Imbesi M, Nathan WJ, Zou X et al. 2017. Loss of NAD-dependent protein deacetylase sirtuin-2 alters mitochondrial protein acetylation and dysregulates mitophagy. Antioxid. Redox Signal. 26:849–63
    [Google Scholar]
  182. 182. 
    Sarikhani M, Mishra S, Desingu PA, Kotyada C, Wolfgeher D et al. 2018. SIRT2 regulates oxidative stress-induced cell death through deacetylation of c-Jun NH2-terminal kinase. Cell Death Differ 25:1638–56
    [Google Scholar]
  183. 183. 
    Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z et al. 2011. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20:487–99
    [Google Scholar]
  184. 184. 
    Serrano L, Martínez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ et al. 2013. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev 27:639–53
    [Google Scholar]
  185. 185. 
    Zhang H, Park SH, Pantazides BG, Karpiuk O, Warren MD et al. 2013. SIRT2 directs the replication stress response through CDK9 deacetylation. PNAS 110:13546–51
    [Google Scholar]
  186. 186. 
    Cheon MG, Kim W, Choi M, Kim JE. 2015. AK-1, a specific SIRT2 inhibitor, induces cell cycle arrest by downregulating Snail in HCT116 human colon carcinoma cells. Cancer Lett 356:637–45
    [Google Scholar]
  187. 187. 
    Zhang H, Head PE, Daddacha W, Park SH, Li X et al. 2016. ATRIP deacetylation by SIRT2 drives ATR checkpoint activation by promoting binding to RPA-ssDNA. Cell Rep 14:1435–47
    [Google Scholar]
  188. 188. 
    Qiu D, Hou X, Han L, Li X, Ge J, Wang Q. 2018. Sirt2-BubR1 acetylation pathway mediates the effects of advanced maternal age on oocyte quality. Aging Cell 17:e12698
    [Google Scholar]
  189. 189. 
    Eskandarian HA, Impens F, Nahori MA, Soubigou G, Coppée JY et al. 2013. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 341:1238858
    [Google Scholar]
  190. 190. 
    Ciarlo E, Heinonen T, Théroude C, Herderschee J, Mombelli M et al. 2017. Sirtuin 2 deficiency increases bacterial phagocytosis by macrophages and protects from chronic staphylococcal infection. Front. Immunol. 8:1037
    [Google Scholar]
  191. 191. 
    Gogoi M, Chandra K, Sarikhani M, Ramani R, Sundaresan NR, Chakravortty D. 2018. Salmonella escapes adaptive immune response via SIRT2 mediated modulation of innate immune response in dendritic cells. PLOS Pathog 14:e1007437
    [Google Scholar]
  192. 192. 
    Bhaskar A, Kumar S, Khan MZ, Singh A, Dwivedi VP, Nandicoori VK. 2020. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. eLife 9:e55415
    [Google Scholar]
  193. 193. 
    Lin J, Sun B, Jiang C, Hong H, Zheng Y. 2013. Sirt2 suppresses inflammatory responses in collagen-induced arthritis. Biochem. Biophys. Res. Commun. 441:897–903
    [Google Scholar]
  194. 194. 
    Pais TF, Szegő ÉM, Marques O, Miller-Fleming L, Antas P et al. 2013. The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. EMBO J 32:2603–16
    [Google Scholar]
  195. 195. 
    Lee AS, Jung YJ, Kim D, Nguyen-Thanh T, Kang KP et al. 2014. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages. Biochem. Biophys. Res. Commun. 450:1363–69
    [Google Scholar]
  196. 196. 
    Jung YJ, Lee AS, Nguyen-Thanh T, Kim D, Kang KP et al. 2015. SIRT2 regulates LPS-induced renal tubular CXCL2 and CCL2 expression. J. Am. Soc. Nephrol. 26:1549–60
    [Google Scholar]
  197. 197. 
    Wang B, Zhang Y, Cao W, Wei X, Chen J, Ying W 2016. SIRT2 plays significant roles in lipopolysaccharides-induced neuroinflammation and brain injury in mice. Neurochem. Res. 41:2490–500
    [Google Scholar]
  198. 198. 
    Yuan F, Xu ZM, Lu LY, Nie H, Ding J et al. 2016. SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-κB p65 acetylation and activation. J. Neurochem. 136:581–93
    [Google Scholar]
  199. 199. 
    Quan S, Principe DR, Dean AE, Park SH, Grippo PJ et al. 2018. Loss of Sirt2 increases and prolongs a caerulein-induced pancreatitis permissive phenotype and induces spontaneous oncogenic Kras mutations in mice. Sci. Rep. 8:16501
    [Google Scholar]
  200. 200. 
    Kosciuczuk EM, Mehrotra S, Saleiro D, Kroczynska B, Majchrzak-Kita B et al. 2019. Sirtuin 2-mediated deacetylation of cyclin-dependent kinase 9 promotes STAT1 signaling in type I interferon responses. J. Biol. Chem. 294:827–37
    [Google Scholar]
  201. 201. 
    Lee YG, Reader BF, Herman D, Streicher A, Englert JA et al. 2019. Sirtuin 2 enhances allergic asthmatic inflammation. JCI Insight 4:e124710
    [Google Scholar]
  202. 202. 
    Luo H, Mu WC, Karki R, Chiang HH, Mohrin M et al. 2019. Mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome regulates the functional deterioration of hematopoietic stem cell aging. Cell Rep 26:945–54.e4
    [Google Scholar]
  203. 203. 
    He M, Chiang HH, Luo H, Zheng Z, Qiao Q et al. 2020. An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab 31:580–91.e5
    [Google Scholar]
  204. 204. 
    Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE et al. 2007. Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease. Science 317:516–19
    [Google Scholar]
  205. 205. 
    Beirowski B, Gustin J, Armour SM, Yamamoto H, Viader A et al. 2011. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. PNAS 108:E952–61
    [Google Scholar]
  206. 206. 
    Biella G, Fusco F, Nardo E, Bernocchi O, Colombo A et al. 2016. Sirtuin 2 inhibition improves cognitive performance and acts on amyloid-β protein precursor processing in two Alzheimer's disease mouse models. J. Alzheimer's Dis. 53:1193–207
    [Google Scholar]
  207. 207. 
    Fourcade S, Morató L, Parameswaran J, Ruiz M, Ruiz-Cortés T et al. 2017. Loss of SIRT2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance. Aging Cell 16:1404–13
    [Google Scholar]
  208. 208. 
    Silva DF, Esteves AR, Oliveira CR, Cardoso SM. 2017. Mitochondrial metabolism power SIRT2-dependent deficient traffic causing Alzheimer's-disease related pathology. Mol. Neurobiol. 54:4021–40
    [Google Scholar]
  209. 209. 
    Singh P, Hanson PS, Morris CM. 2017. Sirtuin-2 protects neural cells from oxidative stress and is elevated in neurodegeneration. Parkinson's Dis 2017:2643587
    [Google Scholar]
  210. 210. 
    Wang G, Li S, Gilbert J, Gritton HJ, Wang Z et al. 2017. Crucial roles for SIRT2 and AMPA receptor acetylation in synaptic plasticity and memory. Cell Rep 20:1335–47
    [Google Scholar]
  211. 211. 
    Hao L, Park J, Jang HY, Bae EJ, Park BH. 2021. Inhibiting protein kinase activity of pyruvate kinase M2 by SIRT2 deacetylase attenuates psoriasis. J. Investig. Dermatol. 141:35563.e6
    [Google Scholar]
  212. 212. 
    Liu PY, Xu N, Malyukova A, Scarlett CJ, Sun YT et al. 2013. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ 20:503–14
    [Google Scholar]
  213. 213. 
    Jing H, Hu J, He B, Negrón Abril YL, Stupinski J et al. 2016. A SIRT2-selective inhibitor promotes c-Myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell 29:297–310
    [Google Scholar]
  214. 214. 
    Zhou W, Ni TK, Wronski A, Glass B, Skibinski A et al. 2016. The SIRT2 deacetylase stabilizes Slug to control malignancy of basal-like breast cancer. Cell Rep 17:1302–17
    [Google Scholar]
  215. 215. 
    Farooqi AS, Hong JY, Cao J, Lu X, Price IR et al. 2019. Novel lysine-based thioureas as mechanism-based inhibitors of sirtuin 2 (SIRT2) with anticancer activity in a colorectal cancer murine model. J. Med. Chem. 62:4131–41
    [Google Scholar]
  216. 216. 
    Krishnan J, Danzer C, Simka T, Ukropec J, Walter KM et al. 2012. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev 26:259–70
    [Google Scholar]
  217. 217. 
    Shi Y, Xu X, Zhang Q, Fu G, Mo Z et al. 2014. tRNA synthetase counteracts c-Myc to develop functional vasculature. eLife 3:e02349
    [Google Scholar]
  218. 218. 
    Sun S, Han X, Li X, Song Q, Lu M et al. 2018. MicroRNA-212–5p prevents dopaminergic neuron death by inhibiting SIRT2 in MPTP-induced mouse model of Parkinson's disease. Front. Mol. Neurosci. 11:381
    [Google Scholar]
  219. 219. 
    Wang Y, Cai Y, Huang H, Chen X, Chen X et al. 2018. miR-486–3p influences the neurotoxicity of a-synuclein by targeting the SIRT2 gene and the polymorphisms at target sites contributing to Parkinson's disease. Cell Physiol. Biochem. 51:2732–45
    [Google Scholar]
  220. 220. 
    Liu QQ, Ren K, Liu SH, Li WM, Huang CJ, Yang XH. 2019. MicroRNA-140–5p aggravates hypertension and oxidative stress of atherosclerosis via targeting Nrf2 and Sirt2. Int. J. Mol. Med. 43:839–49
    [Google Scholar]
  221. 221. 
    Du F, Li Z, Zhang G, Shaoyan S, Geng D et al. 2020. SIRT2, a direct target of miR-212–5p, suppresses the proliferation and metastasis of colorectal cancer cells. J. Cell Mol. Med. 24:9985–98
    [Google Scholar]
  222. 222. 
    Nie H, Hong Y, Lu X, Zhang J, Chen H et al. 2014. SIRT2 mediates oxidative stress-induced apoptosis of differentiated PC12 cells. Neuroreport 25:838–42
    [Google Scholar]
  223. 223. 
    Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. 2003. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol. 23:3173–85
    [Google Scholar]
  224. 224. 
    North BJ, Verdin E. 2007. Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. J. Biol. Chem. 282:19546–55
    [Google Scholar]
  225. 225. 
    Pandithage R, Lilischkis R, Harting K, Wolf A, Jedamzik B et al. 2008. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J. Cell Biol. 180:915–29
    [Google Scholar]
  226. 226. 
    Kang HJ, Song HY, Ahmed MA, Guo Y, Zhang M et al. 2018. NQO1 regulates mitotic progression and response to mitotic stress through modulating SIRT2 activity. Free Radic. Biol. Med. 126:358–71
    [Google Scholar]
  227. 227. 
    Satterstrom FK, Swindell WR, Laurent G, Vyas S, Bulyk ML, Haigis MC. 2015. Nuclear respiratory factor 2 induces SIRT3 expression. Aging Cell 14:818–25
    [Google Scholar]
  228. 228. 
    Finley LW, Carracedo A, Lee J, Souza A, Egia A et al. 2011. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19:416–28
    [Google Scholar]
  229. 229. 
    Jiang L, Shestov AA, Swain P, Yang C, Parker SJ et al. 2016. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532:255–58
    [Google Scholar]
  230. 230. 
    Kim YS, Gupta Vallur P, Jones VM, Worley BL, Shimko S et al. 2020. Context-dependent activation of SIRT3 is necessary for anchorage-independent survival and metastasis of ovarian cancer cells. Oncogene 39:1619–33
    [Google Scholar]
  231. 231. 
    Neeli PK, Gollavilli PN, Mallappa S, Hari SG, Kotamraju S. 2020. A novel metadherinΔ7 splice variant enhances triple negative breast cancer aggressiveness by modulating mitochondrial function via NFĸB-SIRT3 axis. Oncogene 39:2088–102
    [Google Scholar]
  232. 232. 
    Shi T, Wang F, Stieren E, Tong Q. 2005. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280:13560–67
    [Google Scholar]
  233. 233. 
    Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B et al. 2010. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121–25
    [Google Scholar]
  234. 234. 
    Wang Z, Zhang L, Liang Y, Zhang C, Xu Z et al. 2015. Cyclic AMP mimics the anti-ageing effects of calorie restriction by up-regulating sirtuin. Sci. Rep. 5:12012
    [Google Scholar]
  235. 235. 
    Yang W, Nagasawa K, Münch C, Xu Y, Satterstrom K et al. 2016. Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 167:985–1000.e21
    [Google Scholar]
  236. 236. 
    Qian M, Liu Z, Peng L, Tang X, Meng F et al. 2018. Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria. eLife 7:e34836
    [Google Scholar]
  237. 237. 
    Van Meter M, Simon M, Tombline G, May A, Morello TD et al. 2016. JNK phosphorylates SIRT6 to stimulate DNA double-strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks. Cell Rep 16:2641–50
    [Google Scholar]
  238. 238. 
    Lefort K, Brooks Y, Ostano P, Cario-André M, Calpini V et al. 2013. A miR-34a-SIRT6 axis in the squamous cell differentiation network. EMBO J 32:2248–63
    [Google Scholar]
  239. 239. 
    Chen P, Tian K, Tu W, Zhang Q, Han L, Zhou X. 2019. Sirtuin 6 inhibits MWCNTs-induced epithelial-mesenchymal transition in human bronchial epithelial cells via inactivating TGF-β1/Smad2 signaling pathway. Toxicol. Appl. Pharmacol. 374:1–10
    [Google Scholar]
  240. 240. 
    Zhang J, Li Y, Liu Q, Huang Y, Li R et al. 2021. Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on Smad2 in hepatic stellate cells. Hepatology 73:114057
    [Google Scholar]
  241. 241. 
    Tian K, Chen P, Liu Z, Si S, Zhang Q et al. 2017. Sirtuin 6 inhibits epithelial to mesenchymal transition during idiopathic pulmonary fibrosis via inactivating TGF-β1/Smad3 signaling. Oncotarget 8:61011–24
    [Google Scholar]
  242. 242. 
    Zhong X, Huang M, Kim HG, Zhang Y, Chowdhury K et al. 2020. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells. Cell Mol. Gastroenterol. Hepatol. 10:341–64
    [Google Scholar]
  243. 243. 
    Maity S, Muhamed J, Sarikhani M, Kumar S, Ahamed F et al. 2020. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. J. Biol. Chem. 295:415–34
    [Google Scholar]
  244. 244. 
    Xiao C, Kim HS, Lahusen T, Wang RH, Xu X et al. 2010. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J. Biol. Chem. 285:36776–84
    [Google Scholar]
  245. 245. 
    Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S et al. 2012. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat. Med. 18:1643–50
    [Google Scholar]
  246. 246. 
    Thirumurthi U, Shen J, Xia W, LaBaff AM, Wei Y et al. 2014. MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Sci. Signal. 7:ra71
    [Google Scholar]
  247. 247. 
    Zhang Y, Nie L, Xu K, Fu Y, Zhong J et al. 2019. SIRT6, a novel direct transcriptional target of FoxO3a, mediates colon cancer therapy. Theranostics 9:2380–94
    [Google Scholar]
  248. 248. 
    Dong Z, Zhong X, Lei Q, Chen F, Cui H 2019. Transcriptional activation of SIRT6 via FKHRL1/FOXO3a inhibits the Warburg effect in glioblastoma cells. Cell Signal 60:100–13
    [Google Scholar]
  249. 249. 
    Feldman JL, Baeza J, Denu JM. 2013. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288:31350–56
    [Google Scholar]
  250. 250. 
    Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H et al. 2008. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–96
    [Google Scholar]
  251. 251. 
    Zhang X, Khan S, Jiang H, Antonyak MA, Chen X et al. 2016. Identifying the functional contribution of the defatty-acylase activity of SIRT6. Nat. Chem. Biol. 12:614–20
    [Google Scholar]
  252. 252. 
    You W, Rotili D, Li TM, Kambach C, Meleshin M et al. 2017. Structural basis of sirtuin 6 activation by synthetic small molecules. Angew. Chem. Int. Ed. 56:1007–11
    [Google Scholar]
  253. 253. 
    Huang Z, Zhao J, Deng W, Chen Y, Shang J et al. 2018. Identification of a cellularly active SIRT6 allosteric activator. Nat. Chem. Biol. 14:1118–26
    [Google Scholar]
  254. 254. 
    Klein MA, Liu C, Kuznetsov VI, Feltenberger JB, Tang W, Denu JM. 2020. Mechanism of activation for the sirtuin 6 protein deacylase. J. Biol. Chem. 295:1385–99
    [Google Scholar]
  255. 255. 
    Tsai YC, Greco TM, Cristea IM. 2014. Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis. Mol. Cell Proteom. 13:73–83
    [Google Scholar]
  256. 256. 
    Chen S, Blank MF, Iyer A, Huang B, Wang L et al. 2016. SIRT7-dependent deacetylation of the U3–55k protein controls pre-rRNA processing. Nat. Commun. 7:10734
    [Google Scholar]
  257. 257. 
    Song C, Hotz-Wagenblatt A, Voit R, Grummt I. 2017. SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability. Genes Dev 31:1370–81
    [Google Scholar]
  258. 258. 
    Sun L, Fan G, Shan P, Qiu X, Dong S et al. 2016. Regulation of energy homeostasis by the ubiquitin-independent REGγ proteasome. Nat. Commun. 7:12497
    [Google Scholar]
  259. 259. 
    Yan WW, Liang YL, Zhang QX, Wang D, Lei MZ et al. 2018. Arginine methylation of SIRT7 couples glucose sensing with mitochondria biogenesis. EMBO Rep 19:e46377
    [Google Scholar]
  260. 260. 
    Chen Y, Sprung R, Tang Y, Ball H, Sangras B et al. 2007. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell Proteom. 6:812–19
    [Google Scholar]
  261. 261. 
    Tan M, Luo H, Lee S, Jin F, Yang JS et al. 2011. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–28
    [Google Scholar]
  262. 262. 
    Dai L, Peng C, Montellier E, Lu Z, Chen Y et al. 2014. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat. Chem. Biol. 10:365–70
    [Google Scholar]
  263. 263. 
    Xie Z, Zhang D, Chung D, Tang Z, Huang H et al. 2016. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell 62:194–206
    [Google Scholar]
  264. 264. 
    Stevenson FT, Bursten SL, Locksley RM, Lovett DH. 1992. Myristyl acylation of the tumor necrosis factor α precursor on specific lysine residues. J. Exp. Med. 176:1053–62
    [Google Scholar]
  265. 265. 
    Stevenson FT, Bursten SL, Fanton C, Locksley RM, Lovett DH 1993. The 31-kDa precursor of interleukin 1α is myristoylated on specific lysines within the 16-kDa N-terminal propiece. PNAS 90:7245–49
    [Google Scholar]
  266. 266. 
    Tan MJ, Peng C, Anderson KA, Chhoy P, Xie ZY et al. 2014. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab 19:605–17
    [Google Scholar]
  267. 267. 
    Peng C, Lu ZK, Xie ZY, Cheng ZY, Chen Y et al. 2011. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteom. 10:M111.012658
    [Google Scholar]
  268. 268. 
    Zhang ZH, Tan MJ, Xie ZY, Dai LZ, Chen Y, Zhao YM. 2011. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7:58–63
    [Google Scholar]
  269. 269. 
    Park J, Chen Y, Tishkoff DX, Peng C, Tan MJ et al. 2013. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50:919–30
    [Google Scholar]
  270. 270. 
    Rardin MJ, He WJ, Nishida Y, Newman JC, Carrico C et al. 2013. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18:920–33
    [Google Scholar]
  271. 271. 
    Sadhukhan S, Liu XJ, Ryu D, Nelson OD, Stupinski JA et al. 2016. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. PNAS 113:4320–25
    [Google Scholar]
  272. 272. 
    Nandi SK, Rakete S, Nahomi RB, Michel C, Dunbar A et al. 2019. Succinylation is a gain-of-function modification in human lens αB-crystallin. Biochemistry 58:1260–74
    [Google Scholar]
  273. 273. 
    Zhang YX, Bharathi SS, Rardin MJ, Lu J, Maringer KV et al. 2017. Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain. J. Biol. Chem. 292:10239–49
    [Google Scholar]
  274. 274. 
    Liu X, Zhu C, Zha H, Tang J, Rong F et al. 2020. SIRT5 impairs aggregation and activation of the signaling adaptor MAVS through catalyzing lysine desuccinylation. EMBO J 39:e103285
    [Google Scholar]
  275. 275. 
    Wang F, Wang K, Xu W, Zhao SM, Ye D et al. 2017. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell Rep 19:2331–44
    [Google Scholar]
  276. 276. 
    Wang G, Meyer JG, Cai W, Softic S, Li ME et al. 2019. Regulation of UCP1 and mitochondrial metabolism in brown adipose tissue by reversible succinylation. Mol. Cell 74:844–57.e7
    [Google Scholar]
  277. 277. 
    Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. 2011. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 7:58–63
    [Google Scholar]
  278. 278. 
    Colak G, Xie ZY, Zhu AY, Dai LZ, Lu ZK et al. 2013. Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol. Cell. Proteom. 12:3509–20
    [Google Scholar]
  279. 279. 
    Li L, Shi L, Yang S, Yan R, Zhang D et al. 2016. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat. Commun. 7:12235
    [Google Scholar]
  280. 280. 
    Bao X, Liu Z, Zhang W, Gladysz K, Fung YME et al. 2019. Glutarylation of histone H4 lysine 91 regulates chromatin dynamics. Mol. Cell 76:660–75.e9
    [Google Scholar]
  281. 281. 
    Pannek M, Simic Z, Fuszard M, Meleshin M, Rotili D et al. 2017. Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features. Nat. Commun. 8:1513
    [Google Scholar]
  282. 282. 
    Wang YG, Guo YR, Liu K, Yin Z, Liu R et al. 2017. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. Nature 552:273–77
    [Google Scholar]
  283. 283. 
    Wagner GR, Bhatt DP, O'Connell TM, Thompson JW, Dubois LG et al. 2017. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab 25:823–37.e8
    [Google Scholar]
  284. 284. 
    Greene KS, Lukey MJ, Wang X, Blank B, Druso JE et al. 2019. SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. PNAS 116:26625–32
    [Google Scholar]
  285. 285. 
    Nishida Y, Rardin MJ, Carrico C, He WJ, Sahu AK et al. 2015. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell 59:321–32
    [Google Scholar]
  286. 286. 
    Zhou LS, Wang F, Sun RQ, Chen XF, Zhang ML et al. 2016. SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep 17:811–22
    [Google Scholar]
  287. 287. 
    Ma Y, Qi Y, Wang L, Zheng Z, Zhang Y, Zheng J. 2019. SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis. Free Radic. Biol. Med. 134:458–67
    [Google Scholar]
  288. 288. 
    Li F, He XD, Ye DW, Lin Y, Yu HX et al. 2015. NADP+-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol. Cell 60:661–75
    [Google Scholar]
  289. 289. 
    Jing Y, Ding D, Tian G, Kwan KCJ, Liu Z et al. 2020. Semisynthesis of site-specifically succinylated histone reveals that succinylation regulates nucleosome unwrapping rate and DNA accessibility. Nucleic Acids Res 48:9538–49
    [Google Scholar]
  290. 290. 
    Smestad J, Erber L, Chen Y, Maher LJ 3rd 2018. Chromatin succinylation correlates with active gene expression and is perturbed by defective TCA cycle metabolism. iScience 2:63–75
    [Google Scholar]
  291. 291. 
    Stanley P, Packman LC, Koronakis V, Hughes C. 1994. Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science 266:1992–96
    [Google Scholar]
  292. 292. 
    Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. 2018. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev. 118:919–88
    [Google Scholar]
  293. 293. 
    He B, Hu J, Zhang X, Lin H. 2014. Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. Org. Biomol. Chem. 12:7498–502
    [Google Scholar]
  294. 294. 
    Jiang H, Zhang X, Lin H. 2016. Lysine fatty acylation promotes lysosomal targeting of TNF-α. Sci. Rep. 6:24371
    [Google Scholar]
  295. 295. 
    Zhang X, Spiegelman NA, Nelson OD, Jing H, Lin H. 2017. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. eLife 6:e25158
    [Google Scholar]
  296. 296. 
    Jing H, Zhang X, Wisner SA, Chen X, Spiegelman NA et al. 2017. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a. eLife 6:e32436
    [Google Scholar]
  297. 297. 
    Spiegelman NA, Zhang X, Jing H, Cao J, Kotliar IB et al. 2019. SIRT2 and lysine fatty acylation regulate the activity of RalB and cell migration. ACS Chem. Biol. 14:2014–23
    [Google Scholar]
  298. 298. 
    Feldman JL, Dittenhafer-Reed KE, Kudo N, Thelen JN, Ito A et al. 2015. Kinetic and structural basis for acyl-group selectivity and NAD+ dependence in sirtuin-catalyzed deacylation. Biochemistry 54:3037–50
    [Google Scholar]
  299. 299. 
    Spiegelman NA, Hong JY, Hu J, Jing H, Wang M et al. 2019. A small-molecule SIRT2 inhibitor that promotes K-Ras4a lysine fatty-acylation. Chem. Med. Chem. 14:744–48
    [Google Scholar]
  300. 300. 
    Issartel J-P, Koronakis V, Hughes C. 1991. Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature 351:759–61
    [Google Scholar]
  301. 301. 
    Ludwig A, Garcia F, Bauer S, Jarchau T, Benz R et al. 1996. Analysis of the in vivo activation of hemolysin (HlyA) from Escherichia coli. J. Bacteriol. 178:5422–30
    [Google Scholar]
  302. 302. 
    Lim KB, Walker CR, Guo L, Pellett S, Shabanowitz J et al. 2000. Escherichia coli α-hemolysin (HlyA) is heterogeneously acylated in vivo with 14-, 15-, and 17-carbon fatty acids. J. Biol. Chem. 275:36698–702
    [Google Scholar]
  303. 303. 
    Herlax V, Mate S, Rimoldi O, Bakas L. 2009. Relevance of fatty acid covalently bound to Escherichia coli α-hemolysin and membrane microdomains in the oligomerization process. J. Biol. Chem. 284:25199–210
    [Google Scholar]
  304. 304. 
    Heveker N, Bonnaffe D, Ullmann A. 1994. Chemical fatty acylation confers hemolytic and toxic activities to adenylate cyclase protoxin of Bordetella pertussis. J. Biol. Chem. 269:32844–47
    [Google Scholar]
  305. 305. 
    Osickova A, Balashova N, Masin J, Sulc M, Roderova J et al. 2018. Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding. Emerg. Microbes Infect. 7:178
    [Google Scholar]
  306. 306. 
    Greene NP, Crow A, Hughes C, Koronakis V. 2015. Structure of a bacterial toxin-activating acyltransferase. PNAS 112:E3058–66
    [Google Scholar]
  307. 307. 
    Zhou Y, Huang C, Yin L, Wan M, Wang X et al. 2017. Nε-fatty acylation of Rho GTPases by a MARTX toxin effector. Science 358:528–31
    [Google Scholar]
  308. 308. 
    Liu W, Zhou Y, Peng T, Zhou P, Ding X et al. 2018. Nε-fatty acylation of multiple membrane-associated proteins by Shigella IcsB effector to modulate host function. Nat. Microbiol. 3:996–1009
    [Google Scholar]
  309. 309. 
    Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T et al. 2013. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev 27:1680–92
    [Google Scholar]
  310. 310. 
    Fellows R, Denizot J, Stellato C, Cuomo A, Jain P et al. 2018. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat. Commun. 9:105
    [Google Scholar]
  311. 311. 
    Wei W, Mao A, Tang B, Zeng Q, Gao S et al. 2017. Large-scale identification of protein crotonylation reveals its role in multiple cellular functions. J. Proteome Res. 16:1743–52
    [Google Scholar]
  312. 312. 
    Sabari BR, Tang Z, Huang H, Yong-Gonzalez V, Molina H et al. 2015. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell 58:203–15
    [Google Scholar]
  313. 313. 
    Bos J, Muir TW. 2018. A chemical probe for protein crotonylation. J. Am. Chem. Soc. 140:4757–60
    [Google Scholar]
  314. 314. 
    Jiang G, Nguyen D, Archin NM, Yukl SA, Méndez-Lagares G et al. 2018. HIV latency is reversed by ACSS2-driven histone crotonylation. J. Clin. Investig. 128:1190–98
    [Google Scholar]
  315. 315. 
    Liu X, Wei W, Liu Y, Yang X, Wu J et al. 2017. MOF as an evolutionarily conserved histone crotonyltransferase and transcriptional activation by histone acetyltransferase-deficient and crotonyltransferase-competent CBP/p300. Cell Discov 3:17016
    [Google Scholar]
  316. 316. 
    Kollenstart L, de Groot AJL, Janssen GMC, Cheng X, Vreeken K et al. 2019. Gcn5 and Esa1 function as histone crotonyltransferases to regulate crotonylation-dependent transcription. J. Biol. Chem. 294:20122–34
    [Google Scholar]
  317. 317. 
    Bao X, Wang Y, Li X, Li XM, Liu Z et al. 2014. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. eLife 3:e02999
    [Google Scholar]
  318. 318. 
    Gowans GJ, Bridgers JB, Zhang J, Dronamraju R, Burnetti A et al. 2019. Recognition of histone crotonylation by Taf14 links metabolic state to gene expression. Mol. Cell 76:909–21.e3
    [Google Scholar]
  319. 319. 
    Zhang Q, Zeng L, Zhao C, Ju Y, Konuma T, Zhou MM. 2016. Structural insights into histone crotonyl-lysine recognition by the AF9 YEATS domain. Structure 24:1606–12
    [Google Scholar]
  320. 320. 
    Klein BJ, Vann KR, Andrews FH, Wang WW, Zhang J et al. 2018. Structural insights into the π-π-π stacking mechanism and DNA-binding activity of the YEATS domain. Nat. Commun. 9:4574
    [Google Scholar]
  321. 321. 
    Li X, Li XM, Jiang Y, Liu Z, Cui Y et al. 2018. Structure-guided development of YEATS domain inhibitors by targeting π-π-π stacking. Nat. Chem. Biol. 14:1140–49
    [Google Scholar]
  322. 322. 
    Iaconelli J, Lalonde J, Watmuff B, Liu B, Mazitschek R et al. 2017. Lysine deacetylation by HDAC6 regulates the kinase activity of AKT in human neural progenitor cells. ACS Chem. Biol. 12:2139–48
    [Google Scholar]
  323. 323. 
    Goudarzi A, Zhang D, Huang H, Barral S, Kwon Oh K et al. 2016. Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol. Cell 62:169–80
    [Google Scholar]
  324. 324. 
    Liu B, Lin Y, Darwanto A, Song X, Xu G, Zhang K. 2009. Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J. Biol. Chem. 284:32288–95
    [Google Scholar]
  325. 325. 
    Kebede AF, Nieborak A, Shahidian LZ, Le Gras S, Richter F et al. 2017. Histone propionylation is a mark of active chromatin. Nat. Struct. Mol. Biol. 24:1048–56
    [Google Scholar]
  326. 326. 
    Doll S, Urisman A, Oses-Prieto JA, Arnott D, Burlingame AL. 2017. Quantitative proteomics reveals fundamental regulatory differences in oncogenic HRAS and isocitrate dehydrogenase (IDH1) driven astrocytoma. Mol. Cell Proteom. 16:39–56
    [Google Scholar]
  327. 327. 
    Huang H, Tang S, Ji M, Tang Z, Shimada M et al. 2018. p300-mediated lysine 2-hydroxyisobutyrylation regulates glycolysis. Mol. Cell 70:663–78.e6
    [Google Scholar]
  328. 328. 
    Liu K, Li F, Sun Q, Lin N, Han H et al. 2019. p53 β-hydroxybutyrylation attenuates p53 activity. Cell Death Dis 10:243
    [Google Scholar]
  329. 329. 
    Huang H, Luo Z, Qi S, Huang J, Xu P et al. 2018. Landscape of the regulatory elements for lysine 2-hydroxyisobutyrylation pathway. Cell Res 28:111–25
    [Google Scholar]
  330. 330. 
    Yan K, Rousseau J, Machol K, Cross LA, Agre KE et al. 2020. Deficient histone H3 propionylation by BRPF1-KAT6 complexes in neurodevelopmental disorders and cancer. Sci. Adv. 6:eaax0021
    [Google Scholar]
  331. 331. 
    Olp MD, Zhu N, Smith BC. 2017. Metabolically derived lysine acylations and neighboring modifications tune the binding of the BET bromodomains to histone H4. Biochemistry 56:5485–95
    [Google Scholar]
  332. 332. 
    Flynn EM, Huang OW, Poy F, Oppikofer M, Bellon SF et al. 2015. A subset of human bromodomains recognizes butyryllysine and crotonyllysine histone peptide modifications. Structure 23:1801–14
    [Google Scholar]
  333. 333. 
    Smith BC, Denu JM. 2007. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J. Biol. Chem. 282:37256–65
    [Google Scholar]
  334. 334. 
    Bheda P, Wang JT, Escalante-Semerena JC, Wolberger C. 2011. Structure of Sir2Tm bound to a propionylated peptide. Protein Sci 20:131–39
    [Google Scholar]
  335. 335. 
    Garrity J, Gardner JG, Hawse W, Wolberger C, Escalante-Semerena JC. 2007. N-lysine propionylation controls the activity of propionyl-CoA synthetase. J. Biol. Chem. 282:30239–45
    [Google Scholar]
  336. 336. 
    Sun M, Xu J, Wu Z, Zhai L, Liu C et al. 2016. Characterization of protein lysine propionylation in Escherichia coli: global profiling, dynamic change, and enzymatic regulation. J. Proteome Res. 15:4696–708
    [Google Scholar]
  337. 337. 
    Cheng Z, Tang Y, Chen Y, Kim S, Liu H et al. 2009. Molecular characterization of propionyllysines in non-histone proteins. Mol. Cell Proteom. 8:45–52
    [Google Scholar]
  338. 338. 
    Zhang X, Cao R, Niu J, Yang S, Ma H et al. 2019. Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3. Cell Discov 5:35
    [Google Scholar]
  339. 339. 
    Huang J, Luo Z, Ying W, Cao Q, Huang H et al. 2017. 2-Hydroxyisobutyrylation on histone H4K8 is regulated by glucose homeostasis in Saccharomyces cerevisiae. PNAS 114:8782–87
    [Google Scholar]
  340. 340. 
    Dong H, Zhai G, Chen C, Bai X, Tian S et al. 2019. Protein lysine de-2-hydroxyisobutyrylation by CobB in prokaryotes. Sci. Adv. 5:eaaw6703
    [Google Scholar]
  341. 341. 
    Zhang D, Tang Z, Huang H, Zhou G, Cui C et al. 2019. Metabolic regulation of gene expression by histone lactylation. Nature 574:575–80
    [Google Scholar]
  342. 342. 
    Dolan SK, Wijaya A, Geddis SM, Spring DR, Silva-Rocha R, Welch M 2018. Loving the poison: the methylcitrate cycle and bacterial pathogenesis. Microbiology 164:251–59
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-082520-125411
Loading
/content/journals/10.1146/annurev-biochem-082520-125411
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error