Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 5, 2021

Converging evidence in support of omega-3 polyunsaturated fatty acids as a potential therapy for Huntington’s disease symptoms

  • Owen M. Vega and Carlos Cepeda EMAIL logo

Abstract

Huntington’s disease (HD) is a genetic, inexorably fatal neurodegenerative disease. Patient average survivability is up to 20 years after the onset of symptoms. Those who suffer from the disease manifest motor, cognitive, and psychiatric impairments. There is indirect evidence suggesting that omega-3 polyunsaturated fatty acids (ω-3 PUFA) could have alleviating effects on most of HD symptoms. These include beneficial effects against cachexia and weight loss, decrease of cognitive impairment over time, and improvement of psychiatric symptoms such as depression and irritability. Furthermore, there is a positive correlation between consumption of ω-3 PUFAs in diets and prevalence of HD, as well as direct effects on the disease via release of serotonin. Unfortunately, to date, very few studies have examined the effects of ω-3 PUFAs in HD, both on the symptoms and on disease progression. This paper reviews evidence in the literature suggesting that ω-3 PUFAs can be used in neurodegenerative disorders. This information can be extrapolated to support further research of ω-3 PUFAs and their potential use for HD treatment.


Corresponding author: Carlos Cepeda, Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA, E-mail:

Funding source: U.S. Public Health Service

Award Identifier / Grant number: NS111316

Funding source: NICHD

Award Identifier / Grant number: P50-HD103557

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The study was funded by USPHS grant NS111316 (CC). The authors acknowledge the Cell, Circuits and Systems Analysis Core supported by NICHD-P50-HD103557

  3. Conflict of interest statement: The authors declare that they have no competing interests.

References

Arterburn, L.M., Hall, E.B., and Oken, H. (2006). Distribution, interconversion, and dose response of ω-3 fatty acids in humans. Am. J. Clin. Nutr. 83: 1467S–1476S.10.1093/ajcn/83.6.1467SSearch in Google Scholar PubMed

Aryal, S., Hussain, S., Drevon, C.A., Nagelhus, E., Hvalby, Ø., Jensen, V., Walaas, S.I., and Davanger, S. (2019). Omega-3 fatty acids regulate plasticity in distinct hippocampal glutamatergic synapses. Eur. J. Neurosci. 49: 40–50.10.1111/ejn.14224Search in Google Scholar PubMed

Avallone, R., Vitale, G., and Bertolotti, M. (2019). Omega-3 fatty acids and neurodegenerative diseases: new evidence in clinical trials. Int. J. Mol. Sci. 20: 4256.10.3390/ijms20174256Search in Google Scholar PubMed PubMed Central

Aziz, N.A., Van Der Burg, J.M.M., Landwehrmeyer, G.B., Brundin, P., Stijnen, T., and Roos, R.A.C. (2008a). Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 71: 1506–1513.10.1212/01.wnl.0000334276.09729.0eSearch in Google Scholar PubMed

Aziz, N.A., Van Der Marck, M.A., Pijl, H., Olde Rikkert, M.G.M., Bloem, B.R., and Roos, R.A.C. (2008b). Weight loss in neurodegenerative disorders. J. Neurol. 255: 1872–1880.10.1007/s00415-009-0062-8Search in Google Scholar PubMed

Bachoud-Lévi, A.C., Ferreira, J., Massart, R., Youssov, K., Rosser, A., Busse, M., Craufurd, D., Reilmann, R., De Michele, G., Rae, D., et al.. (2019). International guidelines for the treatment of Huntington’s disease. Front. Neurol. 10: 710.10.3389/fneur.2019.00710Search in Google Scholar PubMed PubMed Central

Bai, Z.G., Bo, A., Wu, S.J., Gai, Q.Y., and Chi, I. (2018). Omega-3 polyunsaturated fatty acids and reduction of depressive symptoms in older adults: a systematic review and meta-analysis. J. Affect. Disord. 241: 241–248.10.1016/j.jad.2018.07.057Search in Google Scholar PubMed

Baine, F.K., Kay, C., Ketelaar, M.E., Collins, J.A., Semaka, A., Doty, C.N., Krause, A., Jacquie Greenberg, L., and Hayden, M.R. (2013). Huntington disease in the South African population occurs on diverse and ethnically distinct genetic haplotypes. Eur. J. Hum. Genet. 21: 1120–1127.10.1038/ejhg.2013.2Search in Google Scholar PubMed PubMed Central

Bazan, N.G. (2009). Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prostaglandins Leukot. Essent. Fatty Acids 81: 205–211.10.1016/j.plefa.2009.05.024Search in Google Scholar PubMed PubMed Central

Bazan, N.G. (2019). Docosanoids and elovanoids from omega-3 fatty acids are pro-homeostatic modulators of inflammatory responses, cell damage and neuroprotection. Mol. Aspect. Med. 64: 18–33.10.1016/j.mam.2018.09.003Search in Google Scholar PubMed PubMed Central

Bazinet, R.P. and Layé, S. (2014). Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 15: 771–785, https://doi.org/10.1038/nrn3820.Search in Google Scholar

Behrouzian, B. and Buist, P.H. (2003). Mechanism of fatty acid desaturation: a bioorganic perspective. Prostaglandins Leukot. Essent. Fatty Acids 68: 107–112.10.1016/S0952-3278(02)00260-0Search in Google Scholar

Beltz, B.S., Tlusty, M.F., Benton, J.L., and Sandeman, D.C. (2007). Omega-3 fatty acids upregulate adult neurogenesis. Neurosci. Lett. 415: 154–158.10.1016/j.neulet.2007.01.010Search in Google Scholar PubMed PubMed Central

Bi, J., Chen, C., Sun, P., Tan, H., Feng, F., and Shen, J. (2019). Neuroprotective effect of omega-3 fatty acids on spinal cord injury induced rats. Brain Behav. 9: e01339.10.1002/brb3.1339Search in Google Scholar PubMed PubMed Central

Bianchi, V.E., Herrera, P.F., and Laura, R. (2019). Effect of nutrition on neurodegenerative diseases. A systematic review. Nutr. Neurosci. 1–25.10.1080/1028415X.2019.1681088Search in Google Scholar PubMed

Block, R.C., Dorsey, E.R., Beck, C.A., Brenna, J.T., and Shoulson, I. (2010). Altered cholesterol and fatty acid metabolism in Huntington disease. J. Clin. Lipidol. 4: 17–23.10.1016/j.jacl.2009.11.003Search in Google Scholar PubMed PubMed Central

Bo, Y., Zhang, X., Wang, Y., You, J., Cui, H., Zhu, Y., Pang, W., Liu, W., Jiang, Y., and Lu, Q. (2017). The ω-3 polyunsaturated fatty acids supplementation improved the cognitive function in the Chinese elderly with mild cognitive impairment: a double-blind randomized controlled trial. Nutrients 9: 54.10.3390/nu9010054Search in Google Scholar PubMed PubMed Central

Brotherton, A., Campos, L., Rowell, A., Zoia, V., Simpson, S.A., and Rae, D. (2012). Nutritional management of individuals with Huntington’s disease: nutritional guidelines. Neurodegener. Dis. Manag. 2.10.2217/nmt.11.69Search in Google Scholar

Calon, F., Lim, G.P., Morihara, T., Yang, F., Ubeda, O., Salem, N.Jr, Frautschy, S.A., and Cole, G.M. (2005). Dietary ω-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. Eur. J. Neurosci. 22: 617–626.10.1111/j.1460-9568.2005.04253.xSearch in Google Scholar PubMed

Calviello, G., Su, H.M., Weylandt, K.H., Fasano, E., Serini, S., and Cittadini, A. (2013). Experimental evidence of ω-3 polyunsaturated fatty acid modulation of inflammatory cytokines and bioactive lipid mediators: their potential role in inflammatory, neurodegenerative, and neoplastic diseases. BioMed Res. Int. 2013: 743171.10.1155/2013/743171Search in Google Scholar PubMed PubMed Central

Castilhos, R.M., Augustin, M.C., Santos, J.A., Perandones, C., Saraiva-Pereira, M.L., Jardim, L.B., and Neurogenética, R. (2016). Genetic aspects of Huntington’s disease in Latin America. A systematic review. Clin. Genet. 89: 295–303.10.1111/cge.12641Search in Google Scholar PubMed

Cangemi, C.F. and Miller, R.J. (1998). Huntington’s disease: review and anesthetic case management. Anesth. Prog. 45: 150–153.Search in Google Scholar

Cardoso, C., Afonso, C., and Bandarra, N. (2016). Dietary DHA and health: cognitive function ageing. Nutr. Res. Rev. 29: 281–294.10.1017/S0954422416000184Search in Google Scholar PubMed

Carreira, J.C., Jahanshahi, A., Zeef, D., Kocabicak, E., Vlamings, R., von Hörsten, S., and Temel, Y. (2015). Transgenic rat models of Huntington’s disease. Curr. Top Behav. Neurosci. 22: 135–147.10.1007/7854_2013_245Search in Google Scholar PubMed

Carrie, I., Abelan Van Kan, G., Rolland, Y., Gillete-Guyonnet, S., and Vellas, B. (2009). PUFA for prevention and treatment of dementia? Curr. Pharmaceut. Des. 15: 4173–4185.10.2174/138161209789909764Search in Google Scholar PubMed

Cepeda, C., Cummings, D.M., André, V.M., Holley, S.M., and Levine, M.S. (2010). Genetic mouse models of Huntington’s disease: focus on electrophysiological mechanisms. ASN Neuro 2: e00033.10.1042/AN20090058Search in Google Scholar PubMed PubMed Central

Cepeda, C., and Levine, M.S. (2020). Synaptic dysfunction in Huntington’s disease: lessons from genetic animal models. Neuroscientist, https://doi.org/10.1177/1073858420972662 (Epub ahead of print).Search in Google Scholar PubMed

Chew, H., Solomon, V.A., and Fonteh, A.N. (2020). Involvement of lipids in Alzheimer’s disease pathology and potential therapies. Front. Physiol. 11: 598.10.3389/fphys.2020.00598Search in Google Scholar PubMed PubMed Central

Chitre, N.M., Moniri, N.H., and Murnane, K.S. (2019). Omega-3 fatty acids as druggable therapeutics for neurodegenerative disorders. CNS Neurol. Disord. Drug Targets 18: 735–749.10.2174/1871527318666191114093749Search in Google Scholar PubMed PubMed Central

Christodoulou, C.C., Zamba-Papanicolaou, E., and Demetriou, C.A. (2020). Dietary intake, mediterranean diet adherence and caloric intake in Huntington’s disease: a review. Nutrients 12: 2946.10.3390/nu12102946Search in Google Scholar PubMed PubMed Central

Cook, R.L., Parker, H.M., Donges, C.E., O’Dwyer, N.J., Cheng, H.L., Steinbeck, K.S., Cox, E.P., Franklin, J.L., Garg, M.L., and O’Connor, H.T. (2019). Omega-3 polyunsaturated fatty acids status and cognitive function in young women. Lipids Health Dis. 18.10.1186/s12944-019-1143-zSearch in Google Scholar PubMed PubMed Central

Coyle, J.T. (1979). An animal model for Huntington’s disease. Biol. Psychiatr. 14: 251–276.Search in Google Scholar

Cutuli, D. (2017). Functional and structural benefits induced by omega-3 polyunsaturated fatty acids during aging. Curr. Neuropharmacol. 15: 534–542.10.2174/1570159X14666160614091311Search in Google Scholar PubMed PubMed Central

De Lau, L.M.L., Bornebroek, M., Witteman, J.C.M., Hofman, A., Koudstaal, P.J., and Breteler, M.M.B. (2005). Dietary fatty acids and the risk of Parkinson disease: the Rotterdam Study. Neurology 64: 2040–2045.10.1212/01.WNL.0000166038.67153.9FSearch in Google Scholar PubMed

Dickey, A.S. and La Spada, A.R. (2018). Therapy development in Huntington disease: from current strategies to emerging opportunities. Am. J. Med. Genet. A 176: 842–861.10.1002/ajmg.a.38494Search in Google Scholar PubMed PubMed Central

Dyall, S.C. (2015). Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 7: 52.10.3389/fnagi.2015.00052Search in Google Scholar PubMed PubMed Central

Eckert, G.P., Lipka, U., and Muller, W.E. (2013). Omega-3 fatty acids in neurodegenerative diseases: focus on mitochondria. Prostaglandins Leukot. Essent. Fatty Acids 88: 105–114.10.1016/j.plefa.2012.05.006Search in Google Scholar PubMed

Ehrnhoefer, D.E., Butland, S.L., Pouladi, M.A., and Hayden, M.R. (2009). Mouse models of Huntington disease: variations on a theme. Dis. Model Mech. 2: 123–129.10.1242/dmm.002451Search in Google Scholar PubMed PubMed Central

Ehrnhoefer, D.E., Martin, D., Schmidt, M.E., Qiu, X., Ladha, S., Caron, N.S., Skotte, N.H., Nguyen, Y., Vaid, K., Southwell, A.L., et al.. (2018). Preventing mutant huntingtin proteolysis and intermittent fasting promote autophagy in models of Huntington disease. Acta Neuropathol. Commun. 6: 16.10.1186/s40478-018-0518-0Search in Google Scholar PubMed PubMed Central

Erdman, J., Oria, M., and Pillsbury, L. (2011). Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In: Nutrition and traumatic brain injury: improving acute and subacute health outcomes in military personnel. National Academies Press, Washington, D.C., USA, pp. 188–204.Search in Google Scholar

Evans, W.J., Morley, J.E., Argilés, J., Bales, C., Baracos, V., Guttridge, D., Jatoi, A., Kalantar-Zadeh, K., Lochs, H., Mantovani, G., et al.. (2008). Cachexia: a new definition. Clin. Nutr. 27: 793–799.10.1016/j.clnu.2008.06.013Search in Google Scholar PubMed

Exuzides, A., Crowell, V., Reddy, S.R., Chang, E., and Yohrling, G. (2020). Epidemiology of Huntington’s disease (HD) in the US medicare population (670). Neurology 94.Search in Google Scholar

Ferrante, R.J. (2009). Mouse models of Huntington’s disease and methodological considerations for therapeutic trials. Biochim. Biophys. Acta 1792: 506–520.10.1016/j.bbadis.2009.04.001Search in Google Scholar PubMed PubMed Central

Firląg, M., Kamaszewski, M., Gaca, K., Adamek, D., and Bałasińska, B. (2013). The neuroprotective effect of long-term ω-3 polyunsaturated fatty acids supplementation in the cerebral cortex and hippocampus of aging rats. Folia Neuropathol. 51: 235–242.10.5114/fn.2013.37708Search in Google Scholar PubMed

Gabbay, V., Freed, R.D., Alonso, C.M., Senger, S., Stadterman, J., Davison, B.A., and Klein, R.G. (2018). A double-blind placebo-controlled trial of omega-3 fatty acids as a monotherapy for adolescent depression. J. Clin. Psychiatr. 79: 17m11596.10.4088/JCP.17m11596Search in Google Scholar PubMed PubMed Central

González-Guevara, E., Cárdenas, G., Pérez-Severiano, F., and Martínez-Lazcano, J.C. (2020). Dysregulated brain cholesterol metabolism is linked to neuroinflammation in Huntington’s disease. Mov. Disord. 35: 1113–1127.10.1002/mds.28089Search in Google Scholar PubMed

Gray, M., Shirasaki, D.I., Cepeda, C., Andre, V.M., Wilburn, B., Lu, X.H., Tao, J., Yamazaki, I., Li, S.H., Sun, Y.E., et al.. (2008). Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J. Neurosci. 28: 6182–6195.10.1523/JNEUROSCI.0857-08.2008Search in Google Scholar PubMed PubMed Central

Grosso, G., Micek, A., Marventano, S., Castellano, S., Mistretta, A., Pajak, A., and Galvano, F. (2016). Dietary ω-3 PUFA, fish consumption and depression: a systematic review and meta-analysis of observational studies. J. Affect. Disord. 205: 269–281.10.1016/j.jad.2016.08.011Search in Google Scholar PubMed

Hatami, A., Zhu, C., Relaño-Gines, A., Elias, C., Galstyan, A., Jun, M., Milne, G., Cantor, C.R., Chesselet, M.F., and Shchepinov, M.S. (2018). Deuterium-reinforced linoleic acid lowers lipid peroxidation and mitigates cognitive impairment in the Q140 knock in mouse model of Huntington’s disease. FEBS J. 285: 3002–3012.10.1111/febs.14590Search in Google Scholar PubMed

He, Y., Suofu, Y., Yablonska, S., Wang, X., Larkin, T.M., Kim, J., Carlisle, D.L., and Friedlander, R.M. (2019). Increased serotonin transporter expression in Huntington’s disease patients is not consistently replicated in murine models. J. Huntingtons Dis. 8: 449–457.10.3233/JHD-180318Search in Google Scholar PubMed

Hernández-Echeagaray, E., González, N., Ruelas, A., Mendoza, E., Rodríguez-Martínez, E., and Antuna-Bizarro, R. (2011). Low doses of 3-nitropropionic acid in vivo induce damage in mouse skeletal muscle. Neurol. Sci. 32: 241–254.10.1007/s10072-010-0394-2Search in Google Scholar PubMed

Holmans, P.A., Massey, T.H., and Jones, L. (2017). Genetic modifiers of Mendelian disease: Huntington’s disease and the trinucleotide repeat disorders. Hum. Mol. Genet. 26: R83–R90.10.1093/hmg/ddx261Search in Google Scholar PubMed

Hult, S., Soylu, R., Björklund, T., Belgardt, B.F., Mauer, J., Brüning, J.C., Kirik, D., and Petersén, Å. (2011). Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metabol. 13: 428–439.10.1016/j.cmet.2011.02.013Search in Google Scholar PubMed

Jackson, P.A., Reay, J.L., Scholey, A.B., and Kennedy, D.O. (2012). Docosahexaenoic acid-rich fish oil modulates the cerebral hemodynamic response to cognitive tasks in healthy young adults. Biol. Psychol. 89: 183–190.10.1016/j.biopsycho.2011.10.006Search in Google Scholar PubMed

Karagas, N.E., Rocha, N.P., and Stimming, E.F. (2020). Irritability in Huntington’s disease. J. Huntingtons Dis. 9: 107–113.10.3233/JHD-200397Search in Google Scholar

Lange, K.W. (2020). Lipids in the treatment of neurodegerative diseases. Bailey’s Ind. Oil Fat Prod. 1–17.10.1002/047167849X.bio118Search in Google Scholar

Lange, K.W. (2020). Omega-3 fatty acids and mental health. Glob. Health J. 4: 18–30.10.1016/j.glohj.2020.01.004Search in Google Scholar

Liu, Y.H., Li, X.Y., Chen, C.Y., Zhang, H.M., and Kang, J.X. (2015). Omega-3 fatty acid intervention suppresses lipopolysaccharide-induced inflammation and weight loss in mice. Mar. Drugs 13: 1026–1036.10.3390/md13021026Search in Google Scholar

Luchtman, D.W., Meng, Q., and Song, C. (2012). Ethyl-eicosapentaenoate (E-EPA) attenuates motor impairments and inflammation in the MPTP-probenecid mouse model of Parkinson’s disease. Behav. Brain Res. 226: 386–396.10.1016/j.bbr.2011.09.033Search in Google Scholar

Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., Lawton, M., Trottier, Y., Lehrach, H., Davies, S.W., et al.. (1996). Exon I of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493–506.10.1016/S0092-8674(00)81369-0Search in Google Scholar

Mazahery, H., Conlon, C.A., Beck, K.L., Mugridge, O., Kruger, M.C., Stonehouse, W., Camargo, C.A., Meyer, B.J., Jones, B., and von Hurst, P.R. (2019). A randomised controlled trial of vitamin D and omega-3 long chain polyunsaturated fatty acids in the treatment of irritability and hyperactivity among children with autism spectrum disorder. J. Steroid Biochem. Mol. Biol. 187: 9–16.10.1016/j.jsbmb.2018.10.017Search in Google Scholar PubMed

McColgan, P. and Tabrizi, S.J. (2018). Huntington’s disease: a clinical review. Eur. J. Neurol. 25: 24–34.10.1111/ene.13413Search in Google Scholar PubMed

Menalled, L.B. (2005). Knock-in mouse models of Huntington’s disease. NeuroRx 2: 465–470.10.1602/neurorx.2.3.465Search in Google Scholar PubMed PubMed Central

Meng, Q.J., Luchtman, D.W., El Bahh, B., Zidichouski, J.A., Yang, J., and Song, C. (2010). Ethyl-eicosapentaenoate modulates changes in neurochemistry and brain lipids induced by parkinsonian neurotoxin 1-methyl-4-phenylpyridinium in mouse brain slices. Eur. J. Pharmacol. 649: 127–134.10.1016/j.ejphar.2010.09.046Search in Google Scholar PubMed

Mielcarek, M. and Isalan, M. (2015). A shared mechanism of muscle wasting in cancer and Huntington’s disease. Clin. Transl. Med. 4: 34.10.1186/s40169-015-0076-zSearch in Google Scholar PubMed PubMed Central

Mischoulon, D. and Freeman, M.P. (2013). Omega-3 fatty acids in psychiatry. Psychiatr. Clin. 36: 15–23.10.1016/j.psc.2012.12.002Search in Google Scholar PubMed

Munro, I.A. and Garg, M.L. (2012). Dietary supplementation with n ω-3 PUFA does not promote weight loss when combined with a very-low-energy diet. Br. J. Nutr. 108: 1466–1474.10.1017/S0007114511006817Search in Google Scholar PubMed

Munro, I.A. and Garg, M.L. (2013). Dietary supplementation with long chain omega-3 polyunsaturated fatty acids and weight loss in obese adults. Obes. Res. Clin. Pract. 7: 173–181.10.1016/j.orcp.2011.11.001Search in Google Scholar PubMed

Murphy, R.A., Yeung, E., Mazurak, V.C., and Mourtzakis, M. (2011). Influence of eicosapentaenoic acid supplementation on lean body mass in cancer cachexia. Br. J. Canc. 105: 1469–1473.10.1038/bjc.2011.391Search in Google Scholar PubMed PubMed Central

Nabavi, S.F., Bilotto, S., Russo, G.L., Orhan, I.E., Habtemariam, S., Daglia, M., Devi, K.P., Loizzo, M.R., Tundis, R., and Nabavi, S.M. (2015). Omega-3 polyunsaturated fatty acids and cancer: lessons learned from clinical trials. Canc. Metastasis Rev. 34: 359–380.10.1007/s10555-015-9572-2Search in Google Scholar PubMed

Nance, M.A. (2017). Genetics of Huntington disease. Handb. Clin. Neurol. 144: 3–14.10.1016/B978-0-12-801893-4.00001-8Search in Google Scholar PubMed

Nasir, M. and Bloch, M.H. (2019). Trim the fat: the role of omega-3 fatty acids in psychopharmacology. Ther. Adv. Psychopharmacol. 9: 2045125319869791.10.1177/2045125319869791Search in Google Scholar PubMed PubMed Central

Nooyens, A.C.J., van Gelder, B.M., Bueno-de-Mesquita, H.B., van Boxtel, M.P.J., and Verschuren, W.M.M. (2018). Fish consumption, intake of fats and cognitive decline at middle and older age: the Doetinchem Cohort Study. Eur. J. Nutr. 57: 1667–1675.10.1007/s00394-017-1453-8Search in Google Scholar PubMed

Olivera-Pueyo, J. and Pelegrín-Valero, C. (2017). Dietary supplements for cognitive impairment. Actas Esp. Psiquiatr. 45: 37–47.Search in Google Scholar

Paoli, R.A., Botturi, A., Ciammola, A., Silani, V., Prunas, C., Lucchiari, C., Zugno, E., and Caletti, E. (2017). Neuropsychiatric burden in Huntington’s disease. Brain Sci. 7: 67.10.3390/brainsci7060067Search in Google Scholar PubMed PubMed Central

Patrick, R.P. and Ames, B.N. (2015). Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J. 29: 2207–2222.10.1096/fj.14-268342Search in Google Scholar PubMed

Paulsen, J.S. (2011). Cognitive impairment in Huntington disease: diagnosis and treatment. Curr. Neurol. Neurosci. Rep. 11: 474–483.10.1007/s11910-011-0215-xSearch in Google Scholar

Phan, J., Hickey, M.A., Zhang, P., Chesselet, M.F., and Reue, K. (2009). Adipose tissue dysfunction tracks disease progression in two Huntington’s disease mouse models. Hum. Mol. Genet. 18: 1006–1016.10.1093/hmg/ddn428Search in Google Scholar

Quigley, J. (2017). Juvenile Huntington’s disease: diagnostic and treatment considerations for the psychiatrist. Curr. Psychiatr. Rep. 19: 9.10.1007/s11920-017-0759-9Search in Google Scholar

Raclot, T., Groscolas, R., Langin, D., and Ferré, P. (1997). Site-specific regulation of gene expression by ω-3 polyunsaturated fatty acids in rat white adipose tissues. J. Lipid Res. 38: 1963–1972.10.1016/S0022-2275(20)37127-3Search in Google Scholar

Rasmussen, A., Macias, R., Yescas, P., Ochoa, A., Davila, G., and Alonso, E. (2000). Huntington disease in children: genotype-phenotype correlation. Neuropediatrics 31: 190–194.10.1055/s-2000-7461Search in Google Scholar

Ruzickova, J., Rossmeisl, M., Prazak, T., Flachs, P., Sponarova, J., Vecka, M., Tvrzicka, E., Bryhn, M., and Kopecky, J. (2004). Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids 39: 1177–1185.10.1007/s11745-004-1345-9Search in Google Scholar

Sathyasaikumar, K.V., Stachowski, E.K., Amori, L., Guidetti, P., Muchowski, P.J., and Schwarcz, R. (2010). Dysfunctional kynurenine pathway metabolism in the R6/2 mouse model of Huntington’s disease. J. Neurochem. 113: 1416–1425.10.1111/j.1471-4159.2010.06675.xSearch in Google Scholar

Schwarcz, R., Whetsell, W.O., and Mangano, R.M. (1983). Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219: 316–318.10.1126/science.6849138Search in Google Scholar

Simopoulos, A.P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56: 365–379.10.1016/S0753-3322(02)00253-6Search in Google Scholar

Simopoulos, A.P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60: 502–507.10.1016/j.biopha.2006.07.080Search in Google Scholar PubMed

Slow, E.J., van Raamsdonk, J., Rogers, D., Coleman, S.H., Graham, R.K., Deng, Y., Oh, R., Bissada, N., Hossain, S.M., Yang, Y.Z., et al.. (2003). Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 12: 1555–1567.10.1093/hmg/ddg169Search in Google Scholar PubMed

Smith, G.I., Julliand, S., Reeds, D.N., Sinacore, D.R., Klein, S., and Mittendorfer, B. (2015). Fish oil-derived ω-3 PUFA therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 102: 115–122.10.3945/ajcn.114.105833Search in Google Scholar PubMed PubMed Central

Snowden, J.S. (2017). The neuropsychology of Huntington’s disease. Arch. Clin. Neuropsychol. 1: 876–887.10.1093/arclin/acx086Search in Google Scholar PubMed

Solfrizzi, V., Frisardi, V., Capurso, C., D’Introno, A., Colacicco, A.M., Vendemiale, G., Capurso, A., and Panza, F. (2010). Dietary fatty acids in dementia and predementia syndromes: epidemiological evidence and possible underlying mechanisms. Ageing Res. Rev. 9: 184–199.10.1016/j.arr.2009.07.005Search in Google Scholar PubMed

Stark, K.D., Van Elswyk, M.E., Higgins, M.R., Weatherford, C.A., and Salem, N. (2016). Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 63: 132–152.10.1016/j.plipres.2016.05.001Search in Google Scholar PubMed

Stonehouse, W. (2014). Does consumption of LC omega-3 PUFA enhance cognitive performance in healthy school-aged children and throughout adulthood? Evidence from clinical trials. Nutrients 6: 2730–2758.10.3390/nu6072730Search in Google Scholar PubMed PubMed Central

Su, H.M. (2010). Mechanisms of ω-3 fatty acid-mediated development and maintenance of learning memory performance. J. Nutr. Biochem. 21: 364–373.10.1016/j.jnutbio.2009.11.003Search in Google Scholar PubMed

Su, K.P., Tseng, P.T., Lin, P.Y., Okubo, R., Chen, T.Y., Chen, Y.W., and Matsuoka, Y.J. (2018). Association of use of omega-3 polyunsaturated fatty acids with changes in severity of anxiety symptoms: a systematic review and meta-analysis. JAMA Netw. Open. 1: e182327.10.1001/jamanetworkopen.2018.2327Search in Google Scholar PubMed PubMed Central

Sublette, M.E., Ellis, S.P., Geant, A.L., and Mann, J.J. (2011). Meta-analysis of the effects of Eicosapentaenoic Acid (EPA) in clinical trials in depression. J. Clin. Psychiatr. 72: 1577–1584.10.4088/JCP.10m06634Search in Google Scholar PubMed PubMed Central

Tabrizi, S.J., Ghosh, R., and Leavitt, B.R. (2019). Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron 101: 801–819.10.1016/j.neuron.2019.01.039Search in Google Scholar PubMed

Teixeira, A.L., de Souza, L.C., Rocha, N.P., Furr-Stimming, E., and Lauterbach, E.C. (2016). Revisiting the neuropsychiatry of Huntington’s disease. Dement. Neurophsychol. 10: 261–266.10.1590/s1980-5764-2016dn1004002Search in Google Scholar

Telenius, H., Kremer, H.P., Theilmann, J., Andrew, S.E., Almqvist, E., Anvret, M., Greenberg, C., Greenberg, J., Lucotte, G., Squitieri, F., et al.. (1993). Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Hum. Mol. Genet. 2: 1535–1540.10.1093/hmg/2.10.1535Search in Google Scholar

Tereshchenko, A., Van Der Plas, E., Mathews, K.D., Epping, E., Conrad, A.L., Langbehn, D.R., and Nopoulos, P. (2020). Developmental trajectory of height, weight, and BMI in children and adolescents at risk for Huntington’s disease: effect of mHTT on growth. J. Huntingtons Dis. 9: 245–251.10.3233/JHD-200407Search in Google Scholar

The Huntington’s Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971–983.10.1016/0092-8674(93)90585-ESearch in Google Scholar

Thesing, C.S., Bot, M., Milaneschi, Y., Giltay, E.J., and Penninx, B.W.J.H. (2018). Omega-3 and omega-6 fatty acid levels in depressive and anxiety disorders. Psychoneuroendocrinology 87: 53–62.10.1016/j.psyneuen.2017.10.005Search in Google Scholar PubMed

Trottier, Y., Devys, D., Imbert, G., Saudou, F., An, I., Lutz, Y., Weber, C., Agid, Y., Hirsch, E.C., and Mandel, J.L. (1995). Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form. Nat. Genet. 10: 104–110.10.1038/ng0595-104Search in Google Scholar PubMed

Trushina, E., Singh, R.D., Dyer, R.B., Cao, S., Shah, V.H., Parton, R.G., Pagano, R.E., and McMurray, C.T. (2006). Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo. Hum. Mol. Genet. 15: 3578–3591.10.1093/hmg/ddl434Search in Google Scholar PubMed

Valenza, M. and Cattaneo, E. (2011). Emerging roles for cholesterol in Huntington’s disease. Trends Neurosci. 34: 474–486.10.1016/j.tins.2011.06.005Search in Google Scholar PubMed

Valenza, M., Chen, J.Y., Di Paolo, E., Ruozi, B., Belletti, D., Ferrari Bardile, C., Leoni, V., Caccia, C., Brilli, E., Di Donato, S., et al.. (2015). Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington’s disease mice. EMBO Mol. Med. 7: 1547–1564.10.15252/emmm.201505413Search in Google Scholar PubMed PubMed Central

Valenza, M., Leoni, V., Karasinska, J.M., Petricca, L., Fan, J., Carroll, J., Pouladi, A.A., Fossale, E., Nguyen, H.P., Riess, O., et al.. (2010). Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J. Neurosci. 30: 10844–10850.10.1523/JNEUROSCI.0917-10.2010Search in Google Scholar PubMed PubMed Central

van der Burg, J.M.M., Gardiner, S.L., Ludolph, A.C., Landwehrmeyer, G.B., Roos, R.A.C., and Aziz, N.A. (2017). Body weight is a robust predictor of clinical progression in Huntington disease. Ann. Neurol. 82: 479–483.10.1002/ana.25007Search in Google Scholar

van Dijk, J.G., van der Velde, E.A., Roos, R.A., and Bruyn, G.W. (1986). Juvenile Huntington disease. Hum. Genet. 73: 235–239.10.1007/BF00401235Search in Google Scholar

Vega, O.M., Abkenari, S., Tong, Z., Tedman, A., and Huerta-Yepez, S. (2020). Omega‐3 polyunsaturated fatty acids and lung cancer: nutrition or pharmacology? Nutr. Canc. 1–21.10.1080/01635581.2020.1761408Search in Google Scholar

Waldvogel, H.J., Kim, E.H., Tippett, L.J., Vonsattel, J.P., and Faull, R.L. (2015). The neuropathology of Huntington’s disease. Curr. Topics Behav. Neurosci. 22: 33–80.10.1007/7854_2014_354Search in Google Scholar

Wiktorowska-Owczarek, A., Berezińska, M., and Nowak, J.Z. (2015). PUFAs: structures, metabolism and functions. Adv. Clin. Exp. Med. 24: 931–941.10.17219/acem/31243Search in Google Scholar

Wyant, K.J., Ridder, A.J., and Dayalu, P. (2017). Huntington’s disease—update on treatments. Curr. Neurol. Neurosci. Rep. 17: 33.10.1007/s11910-017-0739-9Search in Google Scholar

Yamamoto, A., Lucas, J.J., and Hen, R. (2000). Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101: 57–66.10.1016/S0092-8674(00)80623-6Search in Google Scholar

Yu, M. and Bega, D. (2019). A review of the clinical evidence for complementary and alternative medicine in Huntington’s disease. Tremor Other Hyperkinet. Mov. 9.10.5334/tohm.509Search in Google Scholar

Zielonka, D., Piotrowska, I., Marcinkowski, J.T., and Mielcarek, M. (2014). Skeletal muscle pathology in Huntington’s disease. Front. Physiol. 5: 380.10.3389/fphys.2014.00380Search in Google Scholar PubMed PubMed Central

Zivkovic, A.M., Telis, N., German, J.B., and Hammock, B.D. (2011). Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. Calif. Agric. 65: 106–111.10.3733/ca.v065n03p106Search in Google Scholar PubMed PubMed Central

Zlokovic, B.V. (2011). Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12: 723–738.10.1038/nrn3114Search in Google Scholar PubMed PubMed Central

Received: 2021-01-24
Accepted: 2021-03-12
Published Online: 2021-04-05
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2021-0013/html
Scroll to top button