1932

Abstract

We review theoretical and computational research, primarily from the past 10 years, addressing the flow of reactive fluids in porous media. The focus is on systems where chemical reactions at the solid–fluid interface cause dissolution of the surrounding porous matrix, creating nonlinear feedback mechanisms that can often lead to greatly enhanced permeability. We discuss insights into the evolution of geological forms that can be inferred from these feedback mechanisms, as well as some geotechnical applications such as enhanced oil recovery, hydraulic fracturing, and carbon sequestration. Until recently, most practical applications of reactive transport have been based on Darcy-scale modeling, where averaged equations for the flow and reactant transport are solved. We summarize the successes and limitations of volume averaging, which leads to Darcy-scale equations, as an introduction to pore-scale modeling. Pore-scale modeling is computationally intensive but offers new insights as well as tests of averaging theories and pore-network models. We include recent research devoted to validation of pore-scale simulations, particularly the use of visual observations from microfluidic experiments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092920-102703
2021-06-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-092920-102703.html?itemId=/content/journals/10.1146/annurev-chembioeng-092920-102703&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lyell C. 1830. Principles of Geology, Being an Attempt to Explain the Former Changes of the Earth's Surface, by Reference to Causes Now in Operation 1 London: Murray
  2. 2. 
    Chen L, Kang Q, Tao W. 2019. Pore-scale study of reactive transport processes in catalyst layer agglomerates of proton exchange membrane fuel cells. Electrochim. Acta 306:454–65
    [Google Scholar]
  3. 3. 
    Ambrosi D, Bussolino F, Preziosi L. 2005. A review of vasculogenesis models. J. Theor. Med. 6:1–19
    [Google Scholar]
  4. 4. 
    Goldstein ME, Reid RL. 1978. Effect of fluid flow on freezing and thawing of saturated porous media. Proc. R. Soc. Lond. A 364:45–73
    [Google Scholar]
  5. 5. 
    Bear J. 1972. Dynamics of Fluids in Porous Media New York: Dover
  6. 6. 
    Ortoleva P, Chadam J, Merino E, Sen A. 1987. Geochemical self-organization. II. The reactive-infiltration instability. Am. J. Sci. 287:1008–40
    [Google Scholar]
  7. 7. 
    Szymczak P, Ladd AJC. 2013. Interacting length scales in the reactive-infiltration instability. Geophys. Res. Lett. 40:3036–41
    [Google Scholar]
  8. 8. 
    Hinch EJ, Bhatt BS. 1990. Stability of an acid front moving through porous rock. J. Fluid Mech. 212:279–88
    [Google Scholar]
  9. 9. 
    Beckingham LE, Mitnick EH, Steefel CI, Zhang S, Voltolini M et al. 2016. Evaluation of mineral reactive surface area estimates for prediction of reactivity of a multi-mineral sediment. Geochim. Cosmochim. Acta 188:310–29
    [Google Scholar]
  10. 10. 
    Hoefner ML, Fogler HS. 1988. Pore evolution and channel formation during flow and reaction in porous media. AIChE J 34:45–54
    [Google Scholar]
  11. 11. 
    Chou L, Garrels RM, Wollast R. 1989. Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem. Geol. 78:269–82
    [Google Scholar]
  12. 12. 
    Saffman PG, Taylor G. 1958. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245:312–29
    [Google Scholar]
  13. 13. 
    Bensimon D, Kadanoff LP, Liang S, Shraiman BI, Tang C. 1986. Viscous flows in two dimensions. Rev. Mod. Phys. 58:977–1002
    [Google Scholar]
  14. 14. 
    Booth R. 2008. Miscible flow through porous media PhD Thesis, Univ. Oxford Oxford, UK:
  15. 15. 
    Szymczak P, Ladd AJC. 2011. The initial stages of cave formation: beyond the one-dimensional paradigm. Earth Planet. Sci. Lett. 301:424–32
    [Google Scholar]
  16. 16. 
    Szymczak P, Ladd AJC. 2006. A network model of channel competition in fracture dissolution. Geophys. Res. Lett. 33:L05401
    [Google Scholar]
  17. 17. 
    Budek A, Szymczak P. 2012. Network models of dissolution of porous media. Phys. Rev. E 86:056318
    [Google Scholar]
  18. 18. 
    Upadhyay VK, Szymczak P, Ladd AJC. 2015. Initial conditions or emergence: What determines dissolution patterns in rough fractures?. J. Geophys. Res. Solid Earth 120:6102–21
    [Google Scholar]
  19. 19. 
    Grimes KG 2009. Solution pipes and pinnacles in syngenetic karst. Karst Rock Features: Karren Sculpturing A Ginés, M Knez, W Dreybrodt 513–23 Ljubljana, Slov: Karst Res. Inst.
    [Google Scholar]
  20. 20. 
    McDuff DR, Shuchart CE, Jackson SK, Postl D, Brown JS. 2010. Understanding wormholes in carbonates: unprecedented experimental scale and 3-D visualization. J. Petrol. Technol. 62:78–81
    [Google Scholar]
  21. 21. 
    Szymczak P, Kwiatkowski K, Jarosinskí M, Kwiatkowski T, Osselin F. 2019. Wormhole formation during acidizing of calcite-cemented fractures in gas-bearing shales. SPE J 24:795–810
    [Google Scholar]
  22. 22. 
    Lipar M, Webb JA, White SQ, Grimes KG. 2015. The genesis of solution pipes: evidence from the Middle–Late Pleistocene Bridgewater Formation calcarenite, southeastern Australia. Geomorphology 246:90–103
    [Google Scholar]
  23. 23. 
    Doerr S, Shakesby R, Walsh R. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev. 51:33–65
    [Google Scholar]
  24. 24. 
    De Waele J, Lauritzen SE, Parise M. 2011. On the formation of dissolution pipes in quaternary coastal calcareous arenites in Mediterranean settings. Earth Surf. Process. Landf. 36:143–57
    [Google Scholar]
  25. 25. 
    Petrus K, Szymczak P. 2016. Influence of layering on the formation and growth of solution pipes. Front. Phys. 3:92
    [Google Scholar]
  26. 26. 
    Hanna RB, Rajaram H. 1998. Influence of aperture variability on dissolutional growth of fissures in karst formations. Water Resour. Res. 34:2843–53
    [Google Scholar]
  27. 27. 
    Maheshwari P, Balakotaiah V. 2013. Comparison of carbonate HCI acidizing experiments with 3D simulations. SPE Prod. Oper. 28:402–13
    [Google Scholar]
  28. 28. 
    Szymczak P, Ladd AJC. 2012. Reactive infiltration instabilities in rocks. Fracture dissolution. J. Fluid Mech. 702:239–64
    [Google Scholar]
  29. 29. 
    Balakotaiah V, Ratnakar RR. 2010. On the use of transfer and dispersion coefficient concepts in low-dimensional diffusion-convection-reaction models. Chem. Eng. Res. Des. 88:342–61
    [Google Scholar]
  30. 30. 
    Fredd CN, Fogler HS. 1998. Influence of transport and reaction on wormhole formation in porous media. AIChE J 44:1933–49
    [Google Scholar]
  31. 31. 
    Szymczak P, Ladd AJC. 2011. Instabilities in the dissolution of a porous matrix. Geophys. Res. Lett. 38:L07403
    [Google Scholar]
  32. 32. 
    Gale JF, Laubach SE, Olson JE, Eichhubl P, Fall A. 2014. Natural fractures in shale: a review and new observations. AAPG Bull 98:2165–216
    [Google Scholar]
  33. 33. 
    Wu W, Sharma MM. 2017. Acid fracturing in shales: effect of dilute acid on properties and pore structure of shale. SPE Prod. Oper. 32:51–63
    [Google Scholar]
  34. 34. 
    García-Ríos M, Luquot L, Soler JM, Cama J. 2015. Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples. Chem. Geol. 414:95–108
    [Google Scholar]
  35. 35. 
    Detwiler RL, Glass RJ, Bourcier WL. 2003. Experimental observations of fracture dissolution: the role of Péclet number in evolving aperture variability. Geophys. Res. Lett. 30:1648
    [Google Scholar]
  36. 36. 
    Gouze P, Noiriel C, Bruderer C, Loggia D. 2003. X-ray tomography characterization of fracture surfaces during dissolution. Geophys. Res. Lett. 30:1267
    [Google Scholar]
  37. 37. 
    Ortoleva P, Auchmuty G, Chadam J, Hettmer J, Merino E et al. 1986. Redox front propagation and banding modalities. Physica D 19:334–54
    [Google Scholar]
  38. 38. 
    Starchenko V, Marra CJ, Ladd AJC. 2016. Three-dimensional simulations of fracture dissolution. J. Geophys. Res. Solid Earth 121:6421–44
    [Google Scholar]
  39. 39. 
    Osselin F, Budek A, Cybulski O, Kondratiuk P, Garstecki P, Szymczak P. 2016. Microfluidic observation of the onset of reactive infiltration instability in an analog fracture. Geophys. Res. Lett. 43:6907–15
    [Google Scholar]
  40. 40. 
    Dreybrodt W. 1990. The role of dissolution kinetics in the development of karst aquifers in limestone: a model simulation of karst evolution. J. Geol. 98:639–55
    [Google Scholar]
  41. 41. 
    White WB, Longyear J. 1962. Some limitations on speleogenetic speculation imposed by the hydraulics of groundwater flow in limestone. Nittany Grotto 10:155–67
    [Google Scholar]
  42. 42. 
    White WB. 1977. Role of solution kinetics in the development of karst aquifers. Mem. Int. Assoc. Hydrogeol. 12:503–17
    [Google Scholar]
  43. 43. 
    Menke HP, Bijeljic B, Andrew MG, Blunt MJ. 2015. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions. Environ. Sci. Technol. 49:4407–14
    [Google Scholar]
  44. 44. 
    Menke H, Andrew M, Blunt M, Bijeljic B. 2016. Reservoir condition imaging of reactive transport in heterogeneous carbonates using fast synchrotron tomography—effect of initial pore structure and flow conditions. Chem. Geol. 428:15–26
    [Google Scholar]
  45. 45. 
    Aharonov E, Whitehead J, Kelemen P, Spiegelman M. 1995. Channeling instability of upwelling melt in the mantle. J. Geophys. Res. 100:433–55
    [Google Scholar]
  46. 46. 
    Andre BJ, Rajaram H. 2005. Dissolution of limestone fractures by cooling waters: early development of hypogene karst systems. Water Resour. Res. 41:1–16
    [Google Scholar]
  47. 47. 
    Szymczak P, Ladd AJC. 2004. Stochastic boundary conditions to the convection-diffusion equation including chemical reactions at solid surfaces. Phys. Rev. E 69:036704
    [Google Scholar]
  48. 48. 
    Detwiler RL, Rajaram H. 2007. Predicting dissolution patterns in variable aperture fractures: evaluation of an enhanced depth-averaged computational model. Water Resour. Res. 43:W04403
    [Google Scholar]
  49. 49. 
    Szymczak P, Ladd AJC. 2009. Wormhole formation in dissolving fractures. J. Geophys. Res. 114:B06203
    [Google Scholar]
  50. 50. 
    Noiriel C, Luquot L, Madé B, Raimbault L, Gouze P, van der Lee J. 2009. Changes in reactive surface area during limestone dissolution: an experimental and modelling study. Chem. Geol. 265:160–70
    [Google Scholar]
  51. 51. 
    Ellis BR, Fitts JP, Bromhal GS, McIntyre DL, Tappero R, Peters CA. 2013. Dissolution-driven permeability reduction of a fractured carbonate caprock. Environ. Eng. Sci. 30:187–93
    [Google Scholar]
  52. 52. 
    Liu P, Yao J, Couples GD, Huang Z, Sun H, Ma J. 2017. Numerical modelling and analysis of reactive flow and wormhole formation in fractured carbonate rocks. Chem. Eng. Sci. 172:143–57
    [Google Scholar]
  53. 53. 
    Deng H, Steefel C, Molins S, DePaolo D. 2018. Fracture evolution in multimineral systems: the role of mineral composition, flow rate, and fracture aperture heterogeneity. ACS Earth Space Chem 2:112–24
    [Google Scholar]
  54. 54. 
    Lee SH, Kang PK. 2020. Three-dimensional vortex-induced reaction hot spots at flow intersections. Phys. Rev. Lett. 124:144501
    [Google Scholar]
  55. 55. 
    Steefel CI 2008. Geochemical kinetics and transport. Kinetics of Water-Rock Interaction SL Brantley, JD Kubicki, AF White 545–89 New York: Springer
    [Google Scholar]
  56. 56. 
    Yeh GT, Tripathi VS. 1991. A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour. Res. 27:3075–94
    [Google Scholar]
  57. 57. 
    Steefel CI, Lasaga AC. 1994. A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294:529–92
    [Google Scholar]
  58. 58. 
    Walter AL, Frind EO, Blowes DW, Ptacek CJ, Molson JW. 1994. Modeling of multicomponent reactive transport in groundwater. 1. Model development and evaluation. Water Resour. Res. 30:3137–48
    [Google Scholar]
  59. 59. 
    Steefel CI, MacQuarrie KTB. 1996. Approaches to modeling of reactive transport in porous media. Rev. Miner. 34:83–125
    [Google Scholar]
  60. 60. 
    Steefel CI, DePaolo DJ, Lichtner PC. 2005. Reactive transport modeling: an essential tool and a new research approach for the earth sciences. Earth Planet. Sci. Lett. 240:539–58
    [Google Scholar]
  61. 61. 
    Steefel CI, Maher K. 2009. Fluid-rock interaction: a reactive transport approach. Rev. Miner. Geochem. 70:485–532
    [Google Scholar]
  62. 62. 
    Steefel CI, Appelo CAJ, Arora B, Jacques D, Kalbacher T et al. 2015. Reactive transport codes for subsurface environmental simulation. Comput. Geosci. 19:445–78
    [Google Scholar]
  63. 63. 
    Seigneur N, Mayer KU, Steefel CI. 2019. Reactive transport in evolving porous media. Rev. Miner. Geochem. 85:197–238
    [Google Scholar]
  64. 64. 
    Tournassat C, Steefel CI. 2015. Ionic transport in nano-porous clays with consideration of electrostatic effects. Rev. Miner. Geochem. 80:287–29
    [Google Scholar]
  65. 65. 
    Lichtner PC, Waber N. 1992. Redox front geochemistry and weathering: theory with application to the Osamu Utsumi uranium mine, Pocos de Caldas, Brazil. J. Geochem. Explor. 45:521–64
    [Google Scholar]
  66. 66. 
    Saaltink MW, Ayora C, Carrera J. 1998. A mathematical formulation for reactive transport that eliminates mineral concentrations. Water Resour. Res. 34:1649–56
    [Google Scholar]
  67. 67. 
    De Simoni M, Carrera J, Sánchez-Vila X, Guadagnini A. 2005. A procedure for the solution of multicomponent reactive transport problems. Water Resour. Res. 41:W11410
    [Google Scholar]
  68. 68. 
    Saaltink MW, Carrera J, Ayora C. 2001. On the behavior of approaches to simulate reactive transport. J. Contam. Hydrol. 48:213–35
    [Google Scholar]
  69. 69. 
    Trefethen LN, Bau D III 1997. Numerical Linear Algebra Philadelphia: Soc. Ind. Appl. Math.
  70. 70. 
    Yeh GT, Tripathi VS. 1989. A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resour. Res. 25:93–108
    [Google Scholar]
  71. 71. 
    Alt-Epping P, Tournassat C, Rasouli P, Steefel CI, Mayer KU et al. 2015. Benchmark reactive transport simulations of a column experiment in compacted bentonite with multispecies diffusion and explicit treatment of electrostatic effects. Comput. Geosci. 19:535–50
    [Google Scholar]
  72. 72. 
    Mayer KU, Alt-Epping P, Jacques D, Arora B, Steefel CI. 2015. Benchmark problems for reactive transport modeling of the generation and attenuation of acid rock drainage. Comput. Geosci. 19:599–611
    [Google Scholar]
  73. 73. 
    Xie M, Mayer KU, Claret F, Alt-Epping P, Jacques D et al. 2015. Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation. Comput. Geosci. 19:655–71
    [Google Scholar]
  74. 74. 
    Poonoosamy J, Wanner C, Epping PA, Águila JF, Samper J et al. 2018. Benchmarking of reactive transport codes for 2D simulations with mineral dissolution–precipitation reactions and feedback on transport parameters. Comput. Geosci. https://doi.org/10.1007/s10596-018-9793-x
    [Crossref] [Google Scholar]
  75. 75. 
    Steefel CI, Yabusaki SB, Mayer KU. 2015. Reactive transport benchmarks for subsurface environmental simulation. Comput. Geosci. 19:439–43
    [Google Scholar]
  76. 76. 
    Leal AM, Blunt MJ, LaForce TC. 2015. A chemical kinetics algorithm for geochemical modelling. Appl. Geochem. 55:46–61
    [Google Scholar]
  77. 77. 
    Leal AM, Kulik DA, Kosakowski G. 2016. Computational methods for reactive transport modeling: a Gibbs energy minimization approach for multiphase equilibrium calculations. Adv. Water Res. 88:231–40
    [Google Scholar]
  78. 78. 
    Oliveira TD, Blunt MJ, Bijeljic B. 2019. Modelling of multispecies reactive transport on pore-space images. Adv. Water Res. 127:192–208
    [Google Scholar]
  79. 79. 
    Johnson JW, Oelkers EH, Helgeson HC. 1992. SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comput. Geosci. 18:899–947
    [Google Scholar]
  80. 80. 
    Parkhurst DL, Appelo CAJ. 2013. Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations Tech. Rep., US Geol. Surv. Menlo Park, CA:
  81. 81. 
    Kulik DA, Wagner T, Dmytrieva SV, Kosakowski G, Hingerl FF et al. 2012. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput. Geosci. 17:1–24
    [Google Scholar]
  82. 82. 
    Waterson N, Deconinck H. 2007. Design principles for bounded higher-order convection schemes—a unified approach. J. Comput. Phys. 224:182–207
    [Google Scholar]
  83. 83. 
    Li S, Kang Z, Feng XT, Pan Z, Huang X, Zhang D. 2020. Three-dimensional hydrochemical model for dissolutional growth of fractures in karst aquifers. Water Resour. Res. 56:e2019WR025631
    [Google Scholar]
  84. 84. 
    Carbonell R, Whitaker S. 1983. Dispersion in pulsed systems. II. Chem. Eng. Sci. 38:1795–802
    [Google Scholar]
  85. 85. 
    Quintard M, Whitaker S. 1994. Transport in ordered and disordered porous media. II. Generalized volume averaging. Transp. Porous Media 14:179–206
    [Google Scholar]
  86. 86. 
    Quintard M, Whitaker S. 1994. Transport in ordered and disordered porous media. III. Closure and comparison between theory and experiment. Transp. Porous Media 15:31–49
    [Google Scholar]
  87. 87. 
    Guo J, Quintard M, Laouafa F. 2015. Dispersion in porous media with heterogeneous nonlinear reactions. Transp. Porous Media 109:541–70
    [Google Scholar]
  88. 88. 
    Brenner H. 1980. Dispersion resulting from flow through spatially periodic porous media. Philos. Trans. R. Soc. Lond. A 297:81–133
    [Google Scholar]
  89. 89. 
    Mei CC. 1992. Method of homogenization applied to dispersion in porous media. Transp. Porous Media 9:261–74
    [Google Scholar]
  90. 90. 
    Auriault J, Adler P. 1995. Taylor dispersion in porous media: analysis by multiple scale expansions. Adv. Water Res. 18:217–26
    [Google Scholar]
  91. 91. 
    Battiato I, Tartakovsky DM. 2011. Applicability regimes for macroscopic models of reactive transport in porous media. J. Contam. Hydrol. 120–21:18–26
    [Google Scholar]
  92. 92. 
    Plummer LN, Wigley TLM. 1976. The kinetics of calcite dissolution in CO2–water systems at 25°C and 1 atmosphere total pressure. Geochim. Cosmochim. Acta 40:191–202
    [Google Scholar]
  93. 93. 
    Plummer LN, Wigley TLM, Parkhurst DL. 1978. The kinetics of calcite dissolution in CO2–water systems at 5°C to 60°C and 0.0 to 1.0 atm of CO. Am. J. Sci. 278:179–216
    [Google Scholar]
  94. 94. 
    Colombani J. 2008. Measurement of the pure dissolution rate constant of a mineral in water. Geochim. Cosmochim. Acta 72:5634–40
    [Google Scholar]
  95. 95. 
    Palandri JL, Kharaka YK. 2004. A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling. Tech. Rep., US Geol. Surv. Menlo Park, CA:
  96. 96. 
    Plümper O, John T, Podladchikov YY, Vrijmoed JC, Scambelluri M. 2016. Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nat. Geosci. 10:150–56
    [Google Scholar]
  97. 97. 
    Plümper O, Botan A, Los C, Liu Y, Malthe-Sørenssen A, Jamtveit B. 2017. Fluid-driven metamorphism of the continental crust governed by nanoscale fluid flow. Nat. Geosci. 10:685–90
    [Google Scholar]
  98. 98. 
    Beinlich A, John T, Vrijmoed JC, Tominaga M, Magna T, Podladchikov YY 2020. Instantaneous rock transformations in the deep crust driven by reactive fluid flow. Nat. Geosci. 13:307–11
    [Google Scholar]
  99. 99. 
    Putnis A. 2009. Mineral replacement reactions. Rev. Miner. Geochem. 70:87–124
    [Google Scholar]
  100. 100. 
    Putnis CV, Mezger K. 2004. A mechanism of mineral replacement: isotope tracing in the model system KCl-KBr-H2O. Geochim. Cosmochim. Acta 68:2839–48
    [Google Scholar]
  101. 101. 
    Beaudoin N, Hamilton A, Koehn D, Shipton ZK, Kelka U. 2018. Reaction-induced porosity fingering: replacement dynamic and porosity evolution in the KBr-KCl system. Geochim. Cosmochim. Acta 232:163–80
    [Google Scholar]
  102. 102. 
    Kar A, McEldrew M, Stout RF, Mays BE, Khair A, Gorski DVCA. 2016. Self-generated electrokinetic fluid flows during pseudomorphic mineral replacement reactions. Langmuir 32:5233–40
    [Google Scholar]
  103. 103. 
    de Anna P, Jimenez-Martinez J, Tabuteau H, Turuban R, Borgne TL et al. 2013. Mixing and reaction kinetics in porous media: an experimental pore scale quantification. Environ. Sci. Technol. 48:508–16
    [Google Scholar]
  104. 104. 
    Oostrom M, Mehmani Y, Romero-Gomez P, Tang Y, Liu H et al. 2016. Pore-scale and continuum simulations of solute transport micromodel benchmark experiments. Comput. Geosci. 20:857–79
    [Google Scholar]
  105. 105. 
    Song W, de Haas TW, Fadaei H, Sinton D. 2014. Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels. Lab Chip 14:4382–90
    [Google Scholar]
  106. 106. 
    Neuville A, Renaud L, Luu TT, Minde MW, Jettestuen E et al. 2017. Xurography for microfluidics on a reactive solid. Lab Chip 17:293–303
    [Google Scholar]
  107. 107. 
    Poonoosamy J, Soulaine C, Burmeister A, Deissmann G, Bosbach D, Roman S 2020. Microfluidic flow-through reactor and 3D Raman imaging for in situ assessment of mineral reactivity in porous and fractured porous media. Lab Chip 20:2562–71
    [Google Scholar]
  108. 108. 
    Soulaine C, Tchelepi HA. 2016. Micro-continuum approach for pore-scale simulation of subsurface processes. Transp. Porous Media 113:431–56
    [Google Scholar]
  109. 109. 
    Soulaine C, Roman S, Kovscek A, Tchelepi HA. 2017. Mineral dissolution and wormholing from a pore-scale perspective. J. Fluid Mech. 827:457–83
    [Google Scholar]
  110. 110. 
    Soulaine C, Creux P, Tchelepi HA. 2019. Micro-continuum framework for pore-scale multiphase fluid transport in shale formations. Transp. Porous Media 127:85–112
    [Google Scholar]
  111. 111. 
    Jiménez-Martínez J, Hyman JD, Chen Y, Carey JW, Porter ML et al. 2020. Homogenization of dissolution and enhanced precipitation induced by bubbles in multiphase flow systems. Geophys. Res. Lett. 47:e2020GL087163
    [Google Scholar]
  112. 112. 
    Molins S, Trebotich D, Steefel CI, Shen C. 2012. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour. Res. 48:W03527
    [Google Scholar]
  113. 113. 
    Molins S, Trebotich D, Yang L, Ajo-Franklin JB, Ligocki TJ et al. 2014. Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. Environ. Sci. Technol. 48:7453–60
    [Google Scholar]
  114. 114. 
    De Baere B, Molins S, Mayer KU, François R. 2016. Determination of mineral dissolution regimes using flow-through time-resolved analysis (FT-TRA) and numerical simulation. Chem. Geol. 430:1–12
    [Google Scholar]
  115. 115. 
    Yang X, Mehmani Y, Perkins WA, Pasquali A, Scönherr M et al. 2016. Intercomparison of 3D pore-scale flow and solute transport simulation methods. Adv. Water Res. 95:176–89
    [Google Scholar]
  116. 116. 
    Molins S, Soulaine C, Prasianakis NI, Abbasi A, Poncet P et al. 2020. Simulation of mineral dissolution at the pore scale with evolving solid–fluid interfaces: review of approaches and benchmark problem set. Comput. Geosci. https://doi.org/10.1007/S10596-019-09903-x
    [Crossref] [Google Scholar]
  117. 117. 
    Dutka F, Starchenko V, Osselin F, Magni S, Szymczak P, Ladd AJC. 2020. Time-dependent shapes of a dissolving mineral grain: comparisons of simulations with microfluidic experiments. Chem. Geol. 540:119459
    [Google Scholar]
  118. 118. 
    Li L, Steefel CI, Yang L 2008. Scale dependence of mineral dissolution kinetics within single pores and fractures. Geochim. Cosmochim. Acta 72:360–77
    [Google Scholar]
  119. 119. 
    Williams M. 2019. Geomechanical characterization of geo-architectured rock specimens using gypsum-based 3D printing. Tech. Rep., Sandia Natl. Lab. Albuquerque, NM:
  120. 120. 
    Ladd AJC, Yu L, Szymczak P. 2020. Dissolution of a single disk: a conformal-mapping approach. J. Fluid Mech. 903:A46
    [Google Scholar]
  121. 121. 
    Berger M, Colella P. 1989. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82:64–84
    [Google Scholar]
  122. 122. 
    Hirt C, Amsden A, Cook J. 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14:227–53
    [Google Scholar]
  123. 123. 
    Yang X, Scheibe TD, Richmond MC, Perkins WA, Vogt SJ et al. 2013. Direct numerical simulation of pore-scale flow in a bead pack: comparison with magnetic resonance imaging observations. Adv. Water Res. 54:228–41
    [Google Scholar]
  124. 124. 
    Li X, Huang H, Meakin P. 2008. Level set simulation of coupled advection-diffusion and pore structure evolution due to mineral precipitation in porous media. Water Resour. Res 44: https://doi.org/10.1029/2007WR006742
    [Crossref] [Google Scholar]
  125. 125. 
    Li X, Huang H, Meakin P. 2010. A three-dimensional level set simulation of coupled reactive transport and precipitation/dissolution. Int. J. Heat Mass Transf. 53:2908–23
    [Google Scholar]
  126. 126. 
    Vu MT, Adler PM. 2014. Application of level-set method for deposition in three-dimensional reconstructed porous media. Phys. Rev. E 89:053301
    [Google Scholar]
  127. 127. 
    Yousefzadeh M, Battiato I. 2019. High order ghost-cell immersed boundary method for generalized boundary conditions. Int. J. Heat Mass Transf. 137:585–98
    [Google Scholar]
  128. 128. 
    Verberg R, Ladd AJC. 2002. Simulation of chemical erosion in rough fractures. Phys. Rev. E 65:056311
    [Google Scholar]
  129. 129. 
    Kang QJ, Zhang DX, Chen SY. 2003. Simulation of dissolution and precipitation in porous media. J. Geophys. Res. 108:B102505
    [Google Scholar]
  130. 130. 
    Verhaeghe F, Arnout S, Blanpain B, Wollants P. 2005. Lattice Boltzmann model for diffusion-controlled dissolution of solid structures in multicomponent liquids. Phys. Rev. E 72:036308
    [Google Scholar]
  131. 131. 
    Kang Q, Lichtner PC, Zhang D. 2006. Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media. J. Geophys. Res. 111:B05203
    [Google Scholar]
  132. 132. 
    Arnout S, Verhaeghe F, Blanpain B, Wollants P. 2008. Lattice Boltzmann model for diffusion-controlled indirect dissolution. Comput. Math. Appl. 55:1377–91
    [Google Scholar]
  133. 133. 
    Pedersen J, Jettestuen E, Vinningland JL, Hiorth A. 2014. Improved lattice Boltzmann models for precipitation and dissolution. Transp. Porous Media 104:593–605
    [Google Scholar]
  134. 134. 
    Katopodes ND. 2019. Volume of fluid method. Free-Surface Flow: Computational Methods766–802 Amsterdam: Elsevier
    [Google Scholar]
  135. 135. 
    Aniszewski W, Ménard T, Marek M. 2014. Volume of fluid (VOF) type advection methods in two-phase flow: a comparative study. Comput. Fluids 97:52–73
    [Google Scholar]
  136. 136. 
    Pilliod JE, Puckett EG. 2004. Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199:465–502
    [Google Scholar]
  137. 137. 
    Sussman M. 2003. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys. 187:110–36
    [Google Scholar]
  138. 138. 
    Trebotich D, Adams MF, Molins S, Steefel CI, Shen C. 2014. High-resolution simulation of pore-scale reactive transport processes associated with carbon sequestration. Comput. Sci. Eng. 16:22–31
    [Google Scholar]
  139. 139. 
    Xu Z, Meakin P. 2008. Phase-field modeling of solute precipitation and dissolution. J. Chem. Phys. 129:014705
    [Google Scholar]
  140. 140. 
    Xu Z, Meakin P. 2011. Phase-field modeling of two-dimensional solute precipitation/dissolution: solid fingers and diffusion-limited precipitation. J. Chem. Phys. 134:044137
    [Google Scholar]
  141. 141. 
    Xu Z, Huang H, Li X, Meakin P. 2012. Phase field and level set methods for modeling solute precipitation and/or dissolution. Comput. Phys. Commun. 183:15–19
    [Google Scholar]
  142. 142. 
    Luo H, Quintard M, Debenest G, Laouafa F. 2012. Properties of a diffuse interface model based on a porous medium theory for solid–liquid dissolution problems. Comput. Geosci. 16:913–32
    [Google Scholar]
  143. 143. 
    Starchenko V, Ladd AJC. 2016. A collection of solvers, libraries and unofficial patches for the OpenFOAM project 2.x.x. GitHub https://github.com/vitst/dissol240
    [Google Scholar]
  144. 144. 
    Weller HG, Tabor G, Jasak H, Fureby C. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12:620–31
    [Google Scholar]
  145. 145. 
    Frisch U, Hasslacher B, Pomeau Y. 1986. Lattice gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56:1505–8
    [Google Scholar]
  146. 146. 
    McNamara GR, Zanetti G. 1988. Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61:2332–35
    [Google Scholar]
  147. 147. 
    Higuera F, Succi S, Benzi R. 1989. Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9:345–49
    [Google Scholar]
  148. 148. 
    Auzerais FM, Dunsmuir J, Ferreol BB, Martys N, Olson J et al. 1996. Transport in sandstone: a study based on three dimensional microtomography. Geophys. Res. Lett. 23:705–8
    [Google Scholar]
  149. 149. 
    Chen L, Kang Q, Mu Y, He YL, Tao WQ. 2014. A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications. Int. J. Heat Mass Transf. 76:210–36
    [Google Scholar]
  150. 150. 
    Liu H, Kang Q, Leonardi CR, Schmieschek S, Narváez A et al. 2015. Multiphase lattice Boltzmann simulations for porous media applications. Comput. Geosci. 20:777–805
    [Google Scholar]
  151. 151. 
    Silva G, Semiao V. 2012. First- and second-order forcing expansions in a lattice Boltzmann method reproducing isothermal hydrodynamics in artificial compressibility form. J. Fluid Mech. 698:282–303
    [Google Scholar]
  152. 152. 
    Ginzburg I, d'Humières D. 2003. Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68:066614
    [Google Scholar]
  153. 153. 
    Qian YH, d'Humières D, Lallemand P. 1992. Lattice BGK models for the Navier-Stokes equation. Europhys. Lett. 17:479–84
    [Google Scholar]
  154. 154. 
    McNamara GR, Alder BJ. 1993. Analysis of the lattice Boltzmann treatment of hydrodynamics. Physica A 194:218–28
    [Google Scholar]
  155. 155. 
    Yu D, Mei R, Luo LS, Shyy W. 2003. Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39:329–67
    [Google Scholar]
  156. 156. 
    Huang JM, Moore MNJ, Ristroph L. 2015. Shape dynamics and scaling laws for a body dissolving in fluid flow. J. Fluid Mech. 765:R3
    [Google Scholar]
  157. 157. 
    Janssen C, Krafczyk M. 2010. A lattice Boltzmann approach for free-surface-flow simulations on non-uniform block-structured grids. Comput. Math Appl. 59:2215–35
    [Google Scholar]
  158. 158. 
    Thömmes G, Becker J, Junk M, Vaikuntam A, Kehrwald D et al. 2009. A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method. J. Comput. Phys. 228:1139–56
    [Google Scholar]
  159. 159. 
    Yu Y, Chen L, Lu J, Hou G. 2014. A coupled lattice Boltzmann and particle level set method for free-surface flows. ScienceAsia 40:238
    [Google Scholar]
  160. 160. 
    Alhashmi Z, Blunt M, Bijeljic B. 2015. Predictions of dynamic changes in reaction rates as a consequence of incomplete mixing using pore scale reactive transport modeling on images of porous media. J. Contam. Hydrol. 179:171–81
    [Google Scholar]
  161. 161. 
    Pereira Nunes JP, Blunt MJ, Bijeljic B 2016. Pore-scale simulation of carbonate dissolution in micro-CT images. J. Geophys. Res. Solid Earth 121:558–76
    [Google Scholar]
  162. 162. 
    Szymczak P, Ladd AJC. 2004. Microscopic simulations of fracture dissolution. Geophys. Res. Lett. 31:L23606
    [Google Scholar]
  163. 163. 
    Tartakovsky AM, Meakin P, Scheibe TD, Wood BD. 2007. A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. Water Resour. Res. 43: https://doi.org/10.1029/2005WR004770
    [Crossref] [Google Scholar]
  164. 164. 
    Ovaysi S, Piri M. 2013. Pore-scale dissolution of CO2 + SO2 in deep saline aquifers. Int. J. Greenh. Gas Control 15:119–33
    [Google Scholar]
  165. 165. 
    Chatelain P, Curioni A, Bergdorf M, Rossinelli D, Andreoni W, Koumoutsakos P. 2008. Billion vortex particle direct numerical simulations of aircraft wakes. Comput. Methods Appl. Mech. Eng. 197:1296–304
    [Google Scholar]
  166. 166. 
    Morris JP, Fox PJ, Zhu Y. 1997. Modeling low Reynolds number incompressible flow using SPH. J. Comput. Phys. 136:214–26
    [Google Scholar]
  167. 167. 
    Ovaysi S, Piri M. 2010. Direct pore-level modeling of incompressible fluid flow in porous media. J. Comput. Phys. 229:7456–76
    [Google Scholar]
  168. 168. 
    De Boever E, Varloteaux C, Nader FH, Foubert A, Békri S et al. 2012. Quantification and prediction of the 3D pore network evolution in carbonate reservoir rocks. Oil Gas Sci. Technol. 67:161–78
    [Google Scholar]
  169. 169. 
    Tansey J, Balhoff MT. 2016. Pore network modeling of reactive transport and dissolution in porous media. Transp. Porous Media 113:303–27
    [Google Scholar]
  170. 170. 
    Xiong Q, Baychev TG, Jivkov AP. 2016. Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. J. Contam. Hydrol. 192:101–17
    [Google Scholar]
  171. 171. 
    Raoof A, Nick H, Wolterbeek T, Spiers C. 2012. Pore-scale modeling of reactive transport in wellbore cement under CO2 storage conditions. Int. J. Greenh. Gas Control 11:S67–77
    [Google Scholar]
  172. 172. 
    Nogues JP, Fitts JP, Celia MA, Peters CA. 2013. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. Water Resour. Res. 49:6006–21
    [Google Scholar]
  173. 173. 
    Blunt MJ, Bijeljic B, Dong H, Gharbi O, Iglauer S et al. 2013. Pore-scale imaging and modelling. Adv. Water Res. 51:197–216
    [Google Scholar]
  174. 174. 
    Varloteaux C, Békri S, Adler PM. 2013. Pore network modelling to determine the transport properties in presence of a reactive fluid: from pore to reservoir scale. Adv. Water Res. 53:87–100
    [Google Scholar]
  175. 175. 
    Wang H, Bernabé Y, Mok U, Evans B. 2016. Localized reactive flow in carbonate rocks: Core-flood experiments and network simulations. J. Geophys. Res. Solid Earth 121:7965–83
    [Google Scholar]
  176. 176. 
    Roded R, Paredes X, Holtzman R. 2018. Reactive transport under stress: permeability evolution in deformable porous media. Earth Planet. Sci. Lett. 493:198–207
    [Google Scholar]
  177. 177. 
    Lasaga AC. 1984. Chemical kinetics of water–rock interactions. J. Geophys. Res. Solid Earth 89:4009–25
    [Google Scholar]
  178. 178. 
    Golfier F, Quintard M, Whitaker S 2002. Heat and mass transfer in tubes: an analysis using the method of volume averaging. J. Porous Media 5:169–85
    [Google Scholar]
  179. 179. 
    Li L, Peters CA, Celia MA 2007. Applicability of averaged concentrations in determining reaction rates in heterogeneous porous media. Am. J. Sci. 307:1146–66
    [Google Scholar]
  180. 180. 
    Starchenko V, Ladd AJC. 2018. The development of wormholes in laboratory scale fractures: perspectives from three-dimensional simulations. Water Resour. Res. 54:7946–59
    [Google Scholar]
  181. 181. 
    Li W, Einstein HH, Germaine JT. 2019. An experimental study of matrix dissolution and wormhole formation using gypsum core flood tests. 1. Permeability evolution and wormhole geometry analysis. J. Geophys. Res. Solid Earth 124:11055–73
    [Google Scholar]
  182. 182. 
    Gray F, Anabaraonye B, Shah S, Boek E, Crawshaw J. 2018. Chemical mechanisms of dissolution of calcite by HCl in porous media: simulations and experiment. Adv. Water Res. 121:369–87
    [Google Scholar]
  183. 183. 
    Hao Y, Smith M, Sholokhova Y, Carroll S 2013. CO2-induced dissolution of low permeability carbonates. Part II: Numerical modeling of experiments. Adv. Water Res. 62:388–408
    [Google Scholar]
  184. 184. 
    Walsh P, Morawiecka-Zacharz I. 2001. A dissolution pipe palaeokarst of mid-Pleistocene age preserved in Miocene limestones near Staszów, Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol 174:327–50
    [Google Scholar]
  185. 185. 
    Lauritzen SE, Skoglund RO. 2013. Glacier ice-contact speleogenesis in marble stripe karst. Proceedings of the 16th International Congress of Speleology 3363–96 San Diego, CA: Academic
    [Google Scholar]
  186. 186. 
    Ajdari A, Bocquet L. 2006. Giant amplification of interfacially driven transport by hydrodynamic slip: diffusio-osmosis and beyond. Phys. Rev. Lett. 96:186102
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092920-102703
Loading
/content/journals/10.1146/annurev-chembioeng-092920-102703
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error