Skip to main content
Log in

Cilia-assisted flow of viscoelastic fluid in a divergent channel under porosity effects

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Cilia-driven laminar flow of an incompressible viscoelastic fluid in a divergent channel has been conducted numerically using the BVP4C technique. The non-Newtonian Jeffrey rheological model is utilized to characterize the fluid. The flow equations are formulated in a curvilinear coordinate system, and the porosity effects are simulated with a body force term in the Navier–Stokes equation. The flow equations are transformed into a wave frame from a fixed frame of reference using a linear mathematical relationship. A biological approximation of creeping phenomena and the long-wavelength assumption is used in the flow analysis. The flow analysis is carried out by using a complex (wavy) propulsion of cilia beating. The two-dimensional flow is controlled by physical parameters—Darcy’s number, curvature parameter, viscoelastic parameter, phase difference, cilia length, and divergent parameter. They also examined the ciliated pumping and bolus trapping in their flow analysis. The boundary layer phenomena in the velocity profile are noticed under more significant porosity and time relaxation effects. The bolus circulations are reduced for a larger porosity medium and larger numeric values of the time relaxation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(B\) :

Half-width of the channel (unit: meter)

\(\overline{\eta }\) :

Axial component

\(C\) :

The wave speed (unit: meter per sec)

\(\overline{\zeta }\) :

Radial component

\(\left( {\overline{U},\overline{V},0} \right)\) :

Two-dimensional velocity field (unit: meter per sec)

\(\overline{z}\) :

Orthogonal component of flow geometry

\(\overline{t}\) :

Time (unit: sec)

\(\overline{U}\) :

Radial velocity (unit: meter per sec)

\(\overline{ \in }_{i} \left( {i = 1 - 3} \right)\) :

Different wave amplitudes

\(\overline{V}\) :

Axial velocity (unit: meter per sec)

\(\overline{\alpha }_{j} \left( {j = 1 - 3} \right)\) :

Wave parameters

\(\in\) :

Wavelength

\(\left( {\overline{\eta },\overline{\zeta },\overline{z}} \right)\) :

Curvilinear coordinates

\({\overline{\Omega }}\) :

Dimensional radius of curvature

\(\left( {\overline{u}, \overline{v}} \right)\) :

Velocity field in the wave frame (unit: meter per sec)

\(Re\) :

Reynolds number

\(Da\) :

Darcy number

\(\delta\) :

Wave number

\(k\) :

Dimensionless radius of curvature

M :

Dimensionless divergent parameter

\(\overline{N}\) :

Divergent parameter

\(\overline{\theta }\) :

Phase difference

\(\kappa\) :

Eccentricity of the elliptical motion

\(\overline{\eta }_{0}\) :

Reference position of the particle

\(\overline{p}\) :

Pressure term (unit: Pa)

\(\overline{I}\) :

Identity tensor

\({\overline{\Upsilon }}\) :

Extra-stress tensor

\(\mu\) :

Absolute viscosity

\(\mathbf {\dot{{\beta }}}\) :

Rate of strain

\(\mathbf {\dot{\beta }}\) :

Slope of \(\dot{\beta }\)

\(\overline{\nabla }{\overline{\text{W}}}\) :

Gradient of the velocity vector

T:

Transpose of the gradient vector

\(\rho\) :

Density (unit: kilogram per meter-cube)

\(K\) :

Permittivity of medium

\(\upsilon\) :

Kinematic viscosity (unit: meter per sec)

\({\overline{\Upsilon }}_{{\overline{\eta }\overline{\eta }}} , {\overline{\Upsilon }}_{{\overline{\eta }\overline{\zeta }}} , {\overline{\Upsilon }}_{{\overline{\zeta }\overline{\zeta }}}\) :

Components of extra-stress tensors

\(\eta\) :

Dimensionless axial component

\(\zeta\) :

Dimensionless radial component

\(\left( { \in_{1} , \in_{2} } \right)\) :

Dimensionless symbols of different amplitudes of complex peristaltic waves

\(\overline{{\lambda_{i} }} \left( {i = 1,2} \right)\) :

Retardation and relaxation time parameters

\(\overline{\nabla }\) :

Nabla operator

References

  • AbdElmaboud Y, Abdelsalam SI (2019) DC/AC magnetohydrodynamic-micropump of a generalized Burger’s fluid in an annulus. Physica Scripta 94:115209

    Article  Google Scholar 

  • Abdelsalam SI, Sohail M (2020) Numerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyrotactic micro-organisms. Pramana 94:1–12

    Article  Google Scholar 

  • Abdelsalam SI, Mekheimer KhS, Zaher AZ (2020) Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: aneurysmal/stenosed segment. Chinese J. Phys 67:314–329

    Article  MathSciNet  Google Scholar 

  • Abumandour RM, Eldesoky IM, Kamel MH, Ahmed MM, Abdelsalam SI (2020) Peristaltic thrusting of a thermal-viscosity nanofluid through a resilient vertical pipe. Zeitschriftfür Naturforschung A 75:727–738

    Article  Google Scholar 

  • Adesanya O, Samuel AS, Onanaye OG, Adeyemi M, Rahimi-Gorji I.M. Alarifi (2019) Evaluation of heat irreversibility in couple stress falling liquid films along heated inclined substrate. J Clean Prod 239:117608

    Article  Google Scholar 

  • Akbar NS, Butt AW (2015) Heat transfer analysis of Rabinowitsch fluid flow due to metachronal wave of cilia. Res Phys 5:92–98

    Google Scholar 

  • Alamri SZ, Ellahi R, Shehzad N, Zeeshan A (2019) Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Mol Liq 273:292–304

    Article  Google Scholar 

  • Ali N, Sajid M, Hayat T (2010) Long wavelength flow analysis in a curved channel. Zeitschriftfür Naturforschung A 65:191–196

    Article  Google Scholar 

  • Asghar Z, Javid K, Waqas M, Ghaffari A, Khan WA (2020) Cilia-driven fluid flow in a curved channel: effects of complex wave and porous medium. Fluid Dyn Res 52:015514

    Article  MathSciNet  Google Scholar 

  • Barton C, Raynor S (1967) Analytical investigation of cilia-induced mucous flow. Bull Math Biophys 29:419–428

    Article  Google Scholar 

  • Bhatti MM, Elelamy AF, Sait SM, Ellahi R (2020) Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: application of bio-engineering in blood clotting and endoscopy. Symmetry 12:532

    Article  Google Scholar 

  • Butt AW, Noreen SA, Mir NA (2020) Heat transfer analysis of peristaltic flow of a Phan-Thien–Tanner fluid model due to metachronal wave of cilia. Biomech Model Mechanobiol 19:1925–1933

    Article  Google Scholar 

  • Butt AW, Akbar NS, Mir NA (2020) Heat transfer analysis of peristaltic flow of a Phan-Thien–Tanner fluid model due to metachronal wave of cilia. Biomech Model Mechanobiol 19:1925–1933

    Article  Google Scholar 

  • Chateau U, d’Ortona S, Poncet J (2018) Favier, Transport and mixing induced by beating cilia in human airways. Front Physiol 9:161

    Article  Google Scholar 

  • Eldesoky IM, Abdelsalam SI, El-Askary WA, El-Refaey AM, Ahmed MM (2019) Joint effect of magnetic field and heat transfer on particulate fluid suspension in a catheterized wavy tube. Bio-NanoScience 9:723–739

    Google Scholar 

  • Eldesoky IM, Abdelsalam SI, El-Askary WA, Ahmed MM (2020) The integrated thermal effect in conjunction with slip conditions on peristaltically induced particle-fluid transport in a catheterized pipe. J Porous Media 23:695

    Article  Google Scholar 

  • Ellahi R, Hussain F, Ishtiaq F, Hussain A (2019) Peristaltic transport of Jeffrey fluid in a rectangular duct through a porous medium under the effect of partial slip: an application to upgrade industrial sieves/filters. Pramana 93:1–9

    Article  Google Scholar 

  • Ellahi R, Sait SM, Shehzad N, Ayaz Z (2019) A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int J Numer Methods for Heat Fluid Flow 30:834

    Article  Google Scholar 

  • Farooq AA, Siddiqui AM (2017) Mathematical model for the ciliary-induced transport of seminal liquids through the ductile efferent. Int J Bio-math 10:1750031–1750048

    MATH  Google Scholar 

  • Farooq AA, Siddiqui AM (2017) Mathematical model for the ciliary-induced transport of seminal liquids through the ductuliefferentes. Int J Biomath 10:1750031

    Article  MathSciNet  MATH  Google Scholar 

  • Farooq AA, Tripathi D, Elnaqeeb T (2019) On the propulsion of micropolar fluid inside a channel due to ciliary induced metachronal wave. Appl Math Comput 347:225–235

    MathSciNet  MATH  Google Scholar 

  • Farooq AA, Shah Z, Kumam P, Alzahrani EO, Shutaywi M, Anwar T (2020) Darcy-Boussinesq model of cilia-assisted transport of a non-Newtonian magneto-biofluid with chemical reactions. Appl Sci 10:1137

    Article  Google Scholar 

  • Fauci L, Dillon R (2006) Biofluid mechanics of reproduction. Ann Rev Fluid Mech 38:371–394

    Article  MATH  Google Scholar 

  • Hajizadeh A, Shah NA, Shah SIA, Animasaun IL, Rahimi-Gorji M, Alarifi IM (2019) Free convection flow of nanofluids between two vertical plates with damped thermal flux. J Mol Liq 289:110964

    Article  Google Scholar 

  • Javid K, Ali N, Bilal M (2020) A numerical simulation of the creeping flow of hybrid-nanofluid through a curved configuration due to metachronal waves propulsion of beating cilia. Eur Phys J Plus 135:49

    Article  Google Scholar 

  • Kahshan M, Lu D, Rahimi-Gorji M (2019) Hydrodynamical study of flow in a permeable channel: application to flat plate dialyzer. Int J Hydrog Energy 44:17041–17047

    Article  Google Scholar 

  • Katherin E et al (2013) Bio-inspired magnetic swimming microrobots for biomedicalapplications. Nanoscale 5:1259–1272

    Article  Google Scholar 

  • Khaderi SN, Craus CB, Hussong J, Schorr N, Belardi J, Westerweel J, Prucker O, Rühe J, Den Toonder JMJ, Onck PR (2011) Magnetically-actuated artificial cilia for microfluidic propulsion. Lab Chip 12:2002–2010

    Article  Google Scholar 

  • Khaderi SN, den Toonder JMJ, Onck PR (2018) Numerical simulations of fluid transport by magnetically actuated artificial cilia. In: Mayne R, den Toonder J (eds) Atlas of cilia bioengineering and biocomputing. River Publishers, Gistrup, pp 137–148

    Google Scholar 

  • Kirch J, Guenther M, Schaefer UF, Schneider M, Lehr CM (2011) Computational fluid dynamics of nanoparticle disposition in the airways: mucus interactions and mucociliary clearance. Comput. Visual Sci. 14:301–308

    Article  MathSciNet  MATH  Google Scholar 

  • Lardner TJ, Shack WJ (1972) Cilia transport. Bull Math Biophys 34:325–335

    Article  Google Scholar 

  • Mahanthesh B, Animasaun IL, Rahimi-Gorji M, Alarifi IM (2019) Quadratic convective transport of dusty Casson and dusty Carreau fluids past a stretched surface with nonlinear thermal radiation, convective condition and non-uniform heat source/sink. Physica A Stat Mech Appl 535:122471

    Article  MathSciNet  Google Scholar 

  • Maqbool K, Shaheen S, Mann AB (2016) Exact solution of cilia induced flow of a Jeffrey fluid in an inclined tube. Springer Plus 5:1–16

    Article  Google Scholar 

  • Munawar S, Saleem N (2020) Entropy analysis of an MHD synthetic cilia assisted transport in a microchannel enclosure with velocity and thermal slippage effects. Coatings 10:414

    Article  Google Scholar 

  • Nadeem S, Sadaf H (2015) Metachronal wave of cilia transport in a curved channel. Zeitschriftfür Naturforschung A 70:33–38

    Article  Google Scholar 

  • Nazari Saeed, Ellahi R, Sarafraz MM, Safaei MR, Asgari A, Akbari OA (2020) Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim 140:1121–1145

    Article  Google Scholar 

  • Rodrigo Velez-Cardero R, Lauga E (2013) Waving transport and propulsion in a generalized Newtonian fluid. J Non-Newton Fluid Mech 199:37–50

    Article  Google Scholar 

  • Sadaf H, Abdelsalam SI (2020) Adverse effects of a hybrid nanofluid in a wavy non-uniform annulus with convective boundary conditions. RSC Adv 10:15035–15043

    Article  Google Scholar 

  • Sadaf H, Nadeem S (2020) Fluid flow analysis of cilia beating in a curved channel in the presence of magnetic field and heat transfer. Can J Phys 98:191–7

    Article  Google Scholar 

  • Seikh AH, Akinshilo AT, Taheri MH, Rahimi-Gorji M, Alharthi N, Khan I, Khan AR (2019) Influence of the nanoparticles and uniform magnetic field on the slip blood flows in arterial vessels. Physica Scripta 94:125218

    Article  Google Scholar 

  • Sleigh MA (1968) Patterns of ciliary beating, aspects of cell motility, 22nd Symp. Society for Experimental Biology (Academic Press, New York

    Google Scholar 

  • Sohail M, Naz R, Abdelsalam SI (2020) Application of non-Fourier double diffusions theories to the boundary-layer flow of a yield stress exhibiting fluid model. Physica A Stat Mech Appl 537:122753

    Article  MathSciNet  Google Scholar 

  • Zaher AZ, Moawad AMA, Mekheimer KhS, Bhatti MM (2021) Residual time of sinusoidal metachronal ciliary flow of non-Newtonian fluid through ciliated walls: fertilization and implantation, Bio-mech Model. Mechanobiol. pp 1–22

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Bhatti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javid, K., Alqsair, U.F., Hassan, M. et al. Cilia-assisted flow of viscoelastic fluid in a divergent channel under porosity effects. Biomech Model Mechanobiol 20, 1399–1412 (2021). https://doi.org/10.1007/s10237-021-01451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01451-7

Keywords

Navigation