1932

Abstract

Bryophytes occupy a basal position in the monophyletic evolution of land plants and have a life cycle in which the gametophyte generation dominates over the sporophyte generation, offering a significant advantage in conducting genetics. Owing to its low genetic redundancy and the availability of an array of versatile molecular tools, including efficient genome editing, the liverwort has become a model organism of choice that provides clues to the mechanisms underlying eco-evo-devo biology in plants. Recent analyses of developmental mutants have revealed that key genes in developmental processes are functionally well conserved in plants, despite their morphological differences, and that lineage-specific evolution occurred by neo/subfunctionalization of common ancestral genes. We suggest that is an excellent platform to uncover the conserved and diversified mechanisms underlying land plant development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-082520-094256
2021-06-17
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/arplant/72/1/annurev-arplant-082520-094256.html?itemId=/content/journals/10.1146/annurev-arplant-082520-094256&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Akagi T, Henry IM, Tao R, Comai L 2014. A Y-chromosome–encoded small RNA acts as a sex determinant in persimmons. Science 346:646–50
    [Google Scholar]
  2. 2. 
    Akagi T, Pilkington SM, Varkonyi-Gasic E, Henry IM, Sugano SS et al. 2019. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat. Plants 5:801–9
    [Google Scholar]
  3. 3. 
    Åkerman Å 1910. Über die Chemotaxis der Marchantia-Spermatozoiden. Z. Bot. 2:94–103
    [Google Scholar]
  4. 4. 
    Aki SS, Mikami T, Naramoto S, Nishihama R, Ishizaki K et al. 2019. Cytokinin signaling is essential for organ formation in Marchantia polymorpha. Plant Cell Physiol. 60:1842–54
    [Google Scholar]
  5. 5. 
    Allen CE. 1917. A chromosome difference correlated with sex differences in Sphærocarpos. Science 46:466–67
    [Google Scholar]
  6. 6. 
    Apostolakos P, Galatis B. 1985. Studies on the development of the air pores and air chambers of Marchanda paleacea. II. Ultrastructure of the initial aperture formation with particular reference to cortical microtubule organizing centres. Can. J. Bot. 63:744–56
    [Google Scholar]
  7. 7. 
    Apostolakos P, Galatis B, Mitrakos K 1982. Studies on the development of the air pores and air chambers of Marchantia paleacea. 1. Light microscopy. Ann. Bot. 49:377–96
    [Google Scholar]
  8. 8. 
    Barnes CR, Land WJG. 1908. Bryological papers. II. The origin of the cupule of Marchantia. Bot. Gaz. 46:401–9
    [Google Scholar]
  9. 9. 
    Berken A, Thomas C, Wittinghofer A 2005. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature 436:1176–80
    [Google Scholar]
  10. 10. 
    Borg M, Brownfield L, Khatab H, Sidorova A, Lingaya M, Twell D 2011. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23:534–49
    [Google Scholar]
  11. 11. 
    Borg M, Rutley N, Kagale S, Hamamura Y, Gherghinoiu M et al. 2014. An EAR-dependent regulatory module promotes male germ cell division and sperm fertility in Arabidopsis. Plant Cell 26:2098–113
    [Google Scholar]
  12. 12. 
    Bowman JL. 2016. A brief history of Marchantia from Greece to genomics. Plant Cell Physiol. 57:210–29The history of how the study of M. polymorpha has attracted people, with pioneering literature from all ages.
    [Google Scholar]
  13. 13. 
    Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304The M. polymorpha genome reveals evolutionary events that gave rise to the terrestrialization of plants.
    [Google Scholar]
  14. 14. 
    Breuninger H, Thamm A, Streubel S, Sakayama H, Nishiyama T, Dolan L 2016. Diversification of a transcription factor family led to the evolution of antagonistically acting genetic regulators of root hair growth. Curr. Biol. 26:1622–28
    [Google Scholar]
  15. 15. 
    Bull JJ. 1983. Evolution of Sex Determining Mechanisms Menlo Park, CA: Benjamin/Cummings Pub. Co.
  16. 16. 
    Burian A, Barbier de Reuille P, Kuhlemeier C 2016. Patterns of stem cell divisions contribute to plant longevity. Curr. Biol. 26:1385–94
    [Google Scholar]
  17. 17. 
    Cammarata J, Scanlon MJ. 2020. A functionally informed evolutionary framework for the study of LRR-RLKs during stem cell maintenance. J. Plant Res. 133:331–42
    [Google Scholar]
  18. 18. 
    Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H et al. 2005. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438:1013–16
    [Google Scholar]
  19. 19. 
    Chiyoda S, Ishizaki K, Kataoka H, Yamato KT, Kohchi T 2008. Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep. 27:1467
    [Google Scholar]
  20. 20. 
    Chiyoda S, Yamato KT, Kohchi T 2014. Plastid transformation of sporelings and suspension-cultured cells from the liverwort Marchantia polymorpha L. Chloroplast Biotechnology: Methods and Protocols P Maliga 439–47 Totowa, NJ: Humana Press
    [Google Scholar]
  21. 21. 
    Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261:201–17
    [Google Scholar]
  22. 22. 
    Craddock C, Lavagi I, Yang Z 2012. New insights into Rho signaling from plant ROP/Rac GTPases. Trends Cell Biol. 22:492–501
    [Google Scholar]
  23. 23. 
    Crawford BC, Sewell J, Golembeski G, Roshan C, Long JA, Yanofsky MF 2015. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347:655–59
    [Google Scholar]
  24. 24. 
    Delmans M, Pollak B, Haseloff J 2017. MarpoDB: an open registry for Marchantia polymorpha genetic parts. Plant Cell Physiol. 58:e5
    [Google Scholar]
  25. 25. 
    Dharmasiri N, Dharmasiri S, Estelle M 2005. The F-box protein TIR1 is an auxin receptor. Nature 435:441–45
    [Google Scholar]
  26. 26. 
    Dierschke T, Flores-Sandoval E, Rast-Somssich MI, Althoff F, Zachgo S, Bowman JL 2020. Gamete-specific expression of TALE class HD genes activates the diploid sporophyte program in Marchantia polymorpha. bioRxiv 2020.04.06.027821. https://doi.org/10.1101/2020.04.06.027821
    [Crossref]
  27. 27. 
    Dievart A, Gottin C, Perin C, Ranwez V, Chantret N 2020. Origin and diversity of plant receptor-like kinases. Annu. Rev. Plant Biol. 71:131–56
    [Google Scholar]
  28. 28. 
    Douin C. 1925. La théorie des initiales chez les Hépatiques à feuilles. Bull. Soc. Bot. Fr. 72:565–91
    [Google Scholar]
  29. 29. 
    Duan Q, Kita D, Li C, Cheung AY, Wu HM 2010. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. PNAS 107:17821–26
    [Google Scholar]
  30. 30. 
    Duckett JG, Ligrone R, Renzaglia KS, Pressel S 2014. Pegged and smooth rhizoids in complex thalloid liverworts (Marchantiopsida): structure, function and evolution. Bot. J. Linn. Soc. 174:68–92
    [Google Scholar]
  31. 31. 
    Durand EJ. 1908. The development of the sexual organs and sporogonium of Marchantia polymorpha. Bull. Torrey Bot. Club 35:321–35
    [Google Scholar]
  32. 32. 
    Eklund DM, Ishizaki K, Flores-Sandoval E, Kikuchi S, Takebayashi Y et al. 2015. Auxin produced by the indole-3-pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. Plant Cell 27:1650–69
    [Google Scholar]
  33. 33. 
    Facette MR, Park Y, Sutimantanapi D, Luo A, Cartwright HN et al. 2015. The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize. Nat. Plants 1:14024
    [Google Scholar]
  34. 34. 
    Feiguelman G, Fu Y, Yalovsky S 2018. ROP GTPases structure-function and signaling pathways. Plant Physiol. 176:57–79
    [Google Scholar]
  35. 35. 
    Fletcher JC. 2020. Recent advances in Arabidopsis CLE peptide signaling. Trends Plant Sci. 25:1005–16
    [Google Scholar]
  36. 36. 
    Flores-Sandoval E, Dierschke T, Fisher TJ, Bowman JL 2016. Efficient and inducible use of artificial microRNAs in Marchantia polymorpha. Plant Cell Physiol. 57:281–90
    [Google Scholar]
  37. 37. 
    Flores-Sandoval E, Eklund DM, Bowman JL 2015. A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLOS Genet. 11:e1005207
    [Google Scholar]
  38. 38. 
    Flores-Sandoval E, Eklund DM, Hong SF, Alvarez JP, Fisher TJ et al. 2018. Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. New Phytol. 218:1612–30
    [Google Scholar]
  39. 39. 
    Flores-Sandoval E, Romani F, Bowman JL 2018. Co-expression and transcriptome analysis of Marchantia polymorpha transcription factors supports class C ARFs as independent actors of an ancient auxin regulatory module. Front. Plant Sci. 9:1345
    [Google Scholar]
  40. 40. 
    Fujisawa M, Nakayama S, Nishio T, Fujishita M, Hayashi K et al. 2003. Evolution of ribosomal DNA unit on the X chromosome independent of autosomal units in the liverwort Marchantia polymorpha. Chromosome Res. 11:695–703
    [Google Scholar]
  41. 41. 
    Galvão VC, Fankhauser C. 2015. Sensing the light environment in plants: photoreceptors and early signaling steps. Curr. Opin. Neurobiol. 34:46–53
    [Google Scholar]
  42. 42. 
    García-Moreno J, Mindell DP. 2000. Rooting a phylogeny with homologous genes on opposite sex chromosomes (gametologs): a case study using avian CHD. Mol. Biol. Evol. 17:1826–32
    [Google Scholar]
  43. 43. 
    Garner WW, Allard HA. 1920. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. Agr. Res. 18:553–606
    [Google Scholar]
  44. 44. 
    Gifford EM Jr 1983. Concept of apical cells in bryophytes and pteridophytes. Annu. Rev. Plant Physiol. 34:419–40
    [Google Scholar]
  45. 45. 
    Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M 2001. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414:271–76
    [Google Scholar]
  46. 46. 
    Harkess A, Huang K, van der Hulst R, Tissen B, Caplan JL et al. 2020. Sex determination by two Y-linked genes in garden asparagus. Plant Cell 32:1790–96
    [Google Scholar]
  47. 47. 
    Harmer SL. 2009. The circadian system in higher plants. Annu. Rev. Plant Biol. 60:357–77
    [Google Scholar]
  48. 48. 
    Harrison CJ. 2017. Development and genetics in the evolution of land plant body plans. Phil. Trans. R. Soc. B 372:20150490
    [Google Scholar]
  49. 49. 
    Haupt G. 1932. Beiträge zur Zytologie der Gattung Marchantia (L.). Z. Indukt. Abstamm. Vererbungsl. 62:367–428
    [Google Scholar]
  50. 50. 
    Higo A, Kawashima T, Borg M, Zhao M, Lopez-Vidriero I et al. 2018. Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nat. Commun. 9:5283Argues that the neofunctionalization of a class of transcription factor advanced the evolution of male gamete in plants.
    [Google Scholar]
  51. 51. 
    Higo A, Niwa M, Yamato KT, Yamada L, Sawada H et al. 2016. Transcriptional framework of male gametogenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol. 57:325–38
    [Google Scholar]
  52. 52. 
    Hirakawa Y, Fujimoto T, Ishida S, Uchida N, Sawa S et al. 2020. Induction of multichotomous branching by CLAVATA peptide in Marchantia polymorpha. Curr. Biol 30:3833–40.e4Shows the impact of the CLE peptide-signaling pathway on the evolution of body plan of land plants.
    [Google Scholar]
  53. 53. 
    Hirakawa Y, Kondo Y, Fukuda H 2010. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22:2618–29
    [Google Scholar]
  54. 54. 
    Hirakawa Y, Sawa S. 2019. Diverse function of plant peptide hormones in local signaling and development. Curr. Opin. Plant Biol. 51:81–87
    [Google Scholar]
  55. 55. 
    Hirakawa Y, Uchida N, Yamaguchi YL, Tabata R, Ishida S et al. 2019. Control of proliferation in the haploid meristem by CLE peptide signaling in Marchantia polymorpha. PLOS Genet. 15:e1007997
    [Google Scholar]
  56. 56. 
    Hisanaga T, Fujimoto S, Cui Y, Sato K, Sano R et al. 2020. Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants. bioRxiv 2020.04.08.031930. https://doi.org/10.1101/2020.04.08.031930
    [Crossref]
  57. 57. 
    Hisanaga T, Okahashi K, Yamaoka S, Kajiwara T, Nishihama R et al. 2019. A cis-acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO J. 38:e100240Describes a transcriptional switching module via mRNA and lncRNA for female and male development in M. polymorpha.
    [Google Scholar]
  58. 58. 
    Hiwatashi T, Goh H, Yasui Y, Koh LQ, Takami H et al. 2019. The RopGEF KARAPPO is essential for the initiation of vegetative reproduction in Marchantia polymorpha. Curr. Biol. 29:3525–31
    [Google Scholar]
  59. 59. 
    Honkanen S, Jones VAS, Morieri G, Champion C, Hetherington AJ et al. 2016. The mechanism forming the cell surface of tip-growing rooting cells is conserved among land plants. Curr. Biol. 26:3238–44Forward genetics using T-DNA tagging identified genes required for rhizoid development in M. polymorpha.
    [Google Scholar]
  60. 60. 
    Honkanen S, Thamm A, Arteaga-Vazquez MA, Dolan L 2018. Negative regulation of conserved RSL class I bHLH transcription factors evolved independently among land plants. eLife 7:3238–44
    [Google Scholar]
  61. 61. 
    Humphries JA, Vejlupkova Z, Luo A, Meeley RB, Sylvester AW et al. 2011. ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize. Plant Cell 23:2273–84
    [Google Scholar]
  62. 62. 
    Inoue K, Nishihama R, Araki T, Kohchi T 2019. Reproductive induction is a far-red high irradiance response that is mediated by phytochrome and phytochrome interacting factor in Marchantia polymorpha. Plant Cell Physiol. 60:1136–45
    [Google Scholar]
  63. 63. 
    Inoue K, Nishihama R, Kataoka H, Hosaka M, Manabe R et al. 2016. Phytochrome signaling is mediated by PHYTOCHROME INTERACTING FACTOR in the liverwort Marchantia polymorpha. Plant Cell 28:1406–21
    [Google Scholar]
  64. 64. 
    Inoue K, Nishihama R, Kohchi T 2017. Evolutionary origin of phytochrome responses and signaling in land plants. Plant Cell Environ. 40:2502–8
    [Google Scholar]
  65. 65. 
    Ishizaki K. 2015. Development of schizogenous intercellular spaces in plants. Front. Plant Sci. 6:497
    [Google Scholar]
  66. 66. 
    Ishizaki K, Chiyoda S, Yamato KT, Kohchi T 2008. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. 49:1084–91
    [Google Scholar]
  67. 67. 
    Ishizaki K, Johzuka-Hisatomi Y, Ishida S, Iida S, Kohchi T 2013. Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L. Sci. Rep. 3:1532
    [Google Scholar]
  68. 68. 
    Ishizaki K, Mizutani M, Shimamura M, Masuda A, Nishihama R, Kohchi T 2013. Essential role of the E3 ubiquitin ligase NOPPERABO1 in schizogenous intercellular space formation in the liverwort Marchantia polymorpha. Plant Cell 25:4075–84
    [Google Scholar]
  69. 69. 
    Ishizaki K, Nishihama R, Ueda M, Inoue K, Ishida S et al. 2015. Development of gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLOS ONE 10:e0138876
    [Google Scholar]
  70. 70. 
    Ishizaki K, Nishihama R, Yamato KT, Kohchi T 2016. Molecular genetic tools and techniques for Marchantia polymorpha research. Plant Cell Physiol. 57:262–70A brief, comprehensive guide for considering M. polymorpha as an experimental platform.
    [Google Scholar]
  71. 71. 
    Ishizaki K, Nonomura M, Kato H, Yamato KT, Kohchi T 2012. Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha. J. Plant Res. 125:643–51
    [Google Scholar]
  72. 72. 
    Jang G, Yi K, Pires ND, Menand B, Dolan L 2011. RSL genes are sufficient for rhizoid system development in early diverging land plants. Development 138:2273–81
    [Google Scholar]
  73. 73. 
    Jones VAS, Dolan L. 2017. MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha. Development 144:1472–76
    [Google Scholar]
  74. 74. 
    Kanazawa T, Morinaka H, Ebine K, Shimada TL, Ishida S et al. 2020. The liverwort oil body is formed by redirection of the secretory pathway. Nat. Commun 11:6152
    [Google Scholar]
  75. 75. 
    Kasahara M, Suetsugu N, Urano Y, Yamamoto C, Ohmori M et al. 2016. An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system. Sci. Rep. 6:39232
    [Google Scholar]
  76. 76. 
    Kato H, Ishizaki K, Kouno M, Shirakawa M, Bowman JL et al. 2015. Auxin-mediated transcriptional system with a minimal set of components is critical for morphogenesis through the life cycle in Marchantia polymorpha. PLOS Genet. 11:e1005084
    [Google Scholar]
  77. 77. 
    Kato H, Kouno M, Takeda M, Suzuki H, Ishizaki K et al. 2017. The roles of the sole activator-type auxin response factor in pattern formation of Marchantia polymorpha. Plant Cell Physiol. 58:1642–51
    [Google Scholar]
  78. 78. 
    Kato H, Mutte SK, Suzuki H, Crespo I, Das S et al. 2020. Design principles of a minimal auxin response system. Nat. Plants 6:473–82The less-redundant genetic regulatory system of M. polymorpha unveils the principle of the auxin response.
    [Google Scholar]
  79. 79. 
    Kato H, Yasui Y, Ishizaki K 2020. Gemma cup and gemma development in Marchantia polymorpha. New Phytol 228:459–65
    [Google Scholar]
  80. 80. 
    Kepinski S, Leyser O. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–51
    [Google Scholar]
  81. 81. 
    Koi S, Hisanaga T, Sato K, Shimamura M, Yamato KT et al. 2016. An evolutionarily conserved plant RKD factor controls germ cell differentiation. Curr. Biol. 26:1775–81
    [Google Scholar]
  82. 82. 
    Korn RW. 1993. Apical cells as meristems. Acta Biotheor. 41:175–89
    [Google Scholar]
  83. 83. 
    Köszegi D, Johnston AJ, Rutten T, Czihal A, Altschmied L et al. 2011. Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J. 67:280–91
    [Google Scholar]
  84. 84. 
    Kubota A, Ishizaki K, Hosaka M, Kohchi T 2013. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci. Biotechnol. Biochem. 77:167–72
    [Google Scholar]
  85. 85. 
    Kubota A, Kita S, Ishizaki K, Nishihama R, Yamato KT, Kohchi T 2014. Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nat. Commun. 5:3668
    [Google Scholar]
  86. 86. 
    Lee JH, Lin H, Joo S, Goodenough U 2008. Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell 133:829–40
    [Google Scholar]
  87. 87. 
    Li FW, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW et al. 2015. Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat. Commun. 6:7852
    [Google Scholar]
  88. 88. 
    Lidforss B. 1904. Über die Reizbewegungen der Marchantia-Spermatozoiden. Jahrb. Wiss. Bot. 41:65–87
    [Google Scholar]
  89. 89. 
    Linde AM, Eklund DM, Kubota A, Pederson ERA, Holm K et al. 2017. Early evolution of the land plant circadian clock. New Phytol. 216:576–90
    [Google Scholar]
  90. 90. 
    MacAlister CA, Park SJ, Jiang K, Marcel F, Bendahmane A et al. 2012. Synchronization of the flowering transition by the tomato terminating flower gene. Nat. Genet. 44:1393–98
    [Google Scholar]
  91. 91. 
    Mano S, Nishihama R, Ishida S, Hikino K, Kondo M et al. 2018. Novel gateway binary vectors for rapid tripartite DNA assembly and promoter analysis with various reporters and tags in the liverwort Marchantia polymorpha. PLOS ONE 13:e0204964
    [Google Scholar]
  92. 92. 
    Marsch-Martínez N, Zúñiga-Mayo VM, Herrera-Ubaldo H, Ouwerkerk PBF, Pablo-Villa J et al. 2014. The NTT transcription factor promotes replum development in Arabidopsis fruits. Plant J. 80:69–81
    [Google Scholar]
  93. 93. 
    Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H et al. 2011. The main auxin biosynthesis pathway in Arabidopsis. PNAS 108:18512–17
    [Google Scholar]
  94. 94. 
    McCourt RM, Delwiche CF, Karol KG 2004. Charophyte algae and land plant origins. Trends Ecol. Evol. 19:661–66
    [Google Scholar]
  95. 95. 
    Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E et al. 2007. An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316:1477–80
    [Google Scholar]
  96. 96. 
    Montgomery SA, Tanizawa Y, Galik B, Wang N, Ito T et al. 2020. Chromatin organization in early land plants reveals an ancestral association between H3K27me3, transposons, and constitutive heterochromatin. Curr. Biol. 30:573–88Features the chromatin landscape in association with transcriptional activity, based on chromosome-level genome assembly.
    [Google Scholar]
  97. 97. 
    Moody LA. 2020. Three-dimensional growth: a developmental innovation that facilitated plant terrestrialization. J. Plant Res. 133:283–90
    [Google Scholar]
  98. 98. 
    Müller NA, Kersten B, Leite Montalvão AP, Mähler N, Bernhardsson C et al. 2020. A single gene underlies the dynamic evolution of poplar sex determination. Nat. Plants 6:630–37
    [Google Scholar]
  99. 99. 
    Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GK, Weijers D 2018. Origin and evolution of the nuclear auxin response system. eLife 7:e33399
    [Google Scholar]
  100. 100. 
    Nagel DH, Kay SA. 2012. Complexity in the wiring and regulation of plant circadian networks. Curr. Biol. 22:648–57
    [Google Scholar]
  101. 101. 
    Naramoto S, Shivas Jones VA, Trozzi N, Sato M, Toyooka K et al. 2019. A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. PLOS Biol. 17:e3000560
    [Google Scholar]
  102. 102. 
    Nishihama R, Ishida S, Urawa H, Kamei Y, Kohchi T 2016. Conditional gene expression/deletion systems for Marchantia polymorpha using its own heat-shock promoter and Cre/loxP-mediated site-specific recombination. Plant Cell Physiol. 57:271–80
    [Google Scholar]
  103. 103. 
    Nishihama R, Ishizaki K, Hosaka M, Matsuda Y, Kubota A, Kohchi T 2015. Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha. J. Plant Res. 128:407–21
    [Google Scholar]
  104. 104. 
    O'Hanlon ME. 1926. Germination of spores and early stages in development of gametophyte of Marchantia polymorpha. Bot. Gaz. 82:215–22
    [Google Scholar]
  105. 105. 
    Okada S, Sone T, Fujisawa M, Nakayama S, Takenaka M et al. 2001. The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. PNAS 98:9454–59
    [Google Scholar]
  106. 106. 
    Ortiz-Ramírez C, Michard E, Simon AA, Damineli DSC, Hernández-Coronado M et al. 2017. GLUTAMATE RECEPTOR-LIKE channels are essential for chemotaxis and reproduction in mosses. Nature 549:91–95
    [Google Scholar]
  107. 107. 
    Otani K, Ishizaki K, Nishihama R, Takatani S, Kohchi T et al. 2018. An evolutionarily conserved NIMA-related kinase directs rhizoid tip growth in the basal land plant Marchantia polymorpha. Development 145:dev154617
    [Google Scholar]
  108. 108. 
    Petricka JJ, Clay NK, Nelson TM 2008. Vein patterning screens and the defectively organized tributaries mutants in Arabidopsis thaliana. Plant J. 56:251–63
    [Google Scholar]
  109. 109. 
    Pires N, Dolan L. 2010. Origin and diversification of basic-helix-loop-helix proteins in plants. Mol. Biol. Evol. 27:862–74
    [Google Scholar]
  110. 110. 
    Poethig RS. 2009. Small RNAs and developmental timing in plants. Curr. Opin. Genet. Dev. 19:374–78
    [Google Scholar]
  111. 111. 
    Possart A, Hiltbrunner A 2013. An evolutionarily conserved signaling mechanism mediates far-red light responses in land plants. Plant Cell 25:102–14
    [Google Scholar]
  112. 112. 
    Possart A, Xu T, Paik I, Hanke S, Keim S et al. 2017. Characterization of phytochrome interacting factors from the moss Physcomitrella patens illustrates conservation of phytochrome signaling modules in land plants. Plant Cell 29:310–30
    [Google Scholar]
  113. 113. 
    Proust H, Honkanen S, Jones VAS, Morieri G, Prescott H et al. 2016. RSL class I genes controlled the development of epidermal structures in the common ancestor of land plants. Curr. Biol. 26:93–99
    [Google Scholar]
  114. 114. 
    Quail PH, Briggs WR, Chory J, Hangarter RP, Harberd NP et al. 1994. Spotlight on phytochrome nomenclature. Plant Cell 6:468–71
    [Google Scholar]
  115. 115. 
    Romani F, Banić E, Florent SN, Kanazawa T, Goodger JQD et al. 2020. Oil body formation in Marchantia polymorpha is controlled by MpC1HDZ and serves as a defense against arthropod herbivores. Curr. Biol 30:2815–28.e8
    [Google Scholar]
  116. 116. 
    Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A et al. 2005. A novel class of MYB factors controls sperm-cell formation in plants. Curr. Biol. 15:244–48
    [Google Scholar]
  117. 117. 
    Rövekamp M, Bowman JL, Grossniklaus U 2016. Marchantia MpRKD regulates the gametophyte-sporophyte transition by keeping egg cells quiescent in the absence of fertilization. Curr. Biol. 26:1782–89
    [Google Scholar]
  118. 118. 
    Sakakibara K, Ando S, Yip HK, Tamada Y, Hiwatashi Y et al. 2013. KNOX2 genes regulate the haploid-to-diploid morphological transition in land plants. Science 339:1067–70
    [Google Scholar]
  119. 119. 
    Sakakibara K, Nishiyama T, Deguchi H, Hasebe M 2008. Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. Evol. Dev. 10:555–66
    [Google Scholar]
  120. 120. 
    Schmid MW, Giraldo-Fonseca A, Rövekamp M, Smetanin D, Bowman JL, Grossniklaus U 2018. Extensive epigenetic reprogramming during the life cycle of Marchantia polymorpha. Genome Biol. 19:9
    [Google Scholar]
  121. 121. 
    Schneider MJ, Troxler RF, Voth PD 1967. Occurrence of indoleacetic acid in the bryophytes. Bot. Gaz. 128:174–79
    [Google Scholar]
  122. 122. 
    Shimamura M. 2016. Marchantia polymorpha: taxonomy, phylogeny and morphology of a model system. Plant Cell Physiol. 57:230–56Comprehensive biological profile of the liverwort M. polymorpha, with a list of relevant literature.
    [Google Scholar]
  123. 123. 
    Solly JE, Cunniffe NJ, Harrison CJ 2017. Regional growth rate differences specified by apical notch activities regulate liverwort thallus shape. Curr. Biol. 27:16–26
    [Google Scholar]
  124. 124. 
    Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY et al. 2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–91
    [Google Scholar]
  125. 125. 
    Stepanova AN, Yun J, Robles LM, Novak O, He W et al. 2011. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23:3961–73
    [Google Scholar]
  126. 126. 
    Sugano SS, Nishihama R. 2018. CRISPR/Cas9-based genome editing of transcription factor genes in Marchantia polymorpha. Methods Mol. Biol. 1830:109–26
    [Google Scholar]
  127. 127. 
    Sugano SS, Nishihama R, Shirakawa M, Takagi J, Matsuda Y et al. 2018. Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLOS ONE 13:e0205117
    [Google Scholar]
  128. 128. 
    Sugawara S, Mashiguchi K, Tanaka K, Hishiyama S, Sakai T et al. 2015. Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol. 56:1641–54
    [Google Scholar]
  129. 129. 
    Suzuki H, Harrison CJ, Shimamura M, Kohchi T, Nishihama R 2020. Positional cues regulate dorsal organ formation in the liverwort Marchantia polymorpha.. J. Plant Res. 133:311–21Clonal analysis suggests that position-dependent organogenesis mechanisms were already present in basal land plants.
    [Google Scholar]
  130. 130. 
    Takeda S, Hanano K, Kariya A, Shimizu S, Zhao L et al. 2011. CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3, two members of the ALOG gene family, in shoot organ boundary cells. Plant J. 66:1066–77
    [Google Scholar]
  131. 131. 
    Takenaka M, Yamaoka S, Hanajiri T, Shimizu-Ueda Y, Yamato KT et al. 2000. Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgen. Res. 9:179–85
    [Google Scholar]
  132. 132. 
    Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV et al. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–45
    [Google Scholar]
  133. 133. 
    Tanaka D, Ishizaki K, Kohchi T, Yamato KT 2016. Cryopreservation of gemmae from the liverwort Marchantia polymorpha L. Plant Cell Physiol. 57:300–6
    [Google Scholar]
  134. 134. 
    Thamm A, Saunders TE, Dolan L 2020. MpFEW RHIZOIDS1 miRNA-mediated lateral inhibition controls rhizoid cell patterning in Marchantia polymorpha. Curr. Biol. 30:1905–15
    [Google Scholar]
  135. 135. 
    Togawa T, Adachi T, Harada D, Mitani T, Tanaka D et al. 2018. Cryopreservation of Marchantia polymorpha spermatozoa. J. Plant Res. 131:1047–54
    [Google Scholar]
  136. 136. 
    Toledo-Ortiz G, Huq E, Quail PH 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–70
    [Google Scholar]
  137. 137. 
    Tsuboyama S, Kodama Y. 2018. AgarTrap protocols on your benchtop: Simple methods for Agrobacterium-mediated genetic transformation of the liverwort Marchantia polymorpha. Plant Biotechnol. 35:93–99
    [Google Scholar]
  138. 138. 
    Tsuzuki M, Futagami K, Shimamura M, Inoue C, Kunimoto K et al. 2019. An early arising role of the microRNA156/529-SPL module in reproductive development revealed by the liverwort Marchantia polymorpha. Curr. Biol. 29:3307–14
    [Google Scholar]
  139. 139. 
    Ulmasov T, Hagen G, Guilfoyle TJ 1999. Activation and repression of transcription by auxin-response factors. PNAS 96:5844–49
    [Google Scholar]
  140. 140. 
    Wang Q, Hasson A, Rossmann S, Theres K 2016. Divide et impera: Boundaries shape the plant body and initiate new meristems. New Phytol. 209:485–98
    [Google Scholar]
  141. 141. 
    Wang Q, Qin G, Cao M, Chen R, He Y et al. 2020. A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nat. Commun. 11:679
    [Google Scholar]
  142. 142. 
    Wann FB. 1925. Some of the factors involved in the sexual reproduction of Marchantia polymorpha. Am. J. Bot. 12:307–18
    [Google Scholar]
  143. 143. 
    Whitewoods CD, Cammarata J, Nemec Venza Z, Sang S, Crook AD et al. 2018. CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. Curr. Biol. 28:2365–76
    [Google Scholar]
  144. 144. 
    Wyatt R. 1982. Population ecology of bryophytes. J. Hattori Bot. Lab. 52:179–98
    [Google Scholar]
  145. 145. 
    Xu C, Park SJ, Van Eck J, Lippman ZB 2016. Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes Dev. 30:2048–61
    [Google Scholar]
  146. 146. 
    Yamaoka S, Nishihama R, Yoshitake Y, Ishida S, Inoue K et al. 2018. Generative cell specification requires transcription factors evolutionarily conserved in land plants. Curr. Biol. 28:479–86Shows that the limited genetic complexity of M. polymorpha uncovers genes crucial in germ cell differentiation in land plants.
    [Google Scholar]
  147. 147. 
    Yamaoka S, Takenaka M, Hanajiri T, Shimizu-Ueda Y, Nishida H et al. 2004. A mutant with constitutive sexual organ development in Marchantia polymorpha L. Sex. Plant Reprod. 16:253–57
    [Google Scholar]
  148. 148. 
    Yamato KT, Ishizaki K, Fujisawa M, Okada S, Nakayama S et al. 2007. Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. PNAS 104:6472–77
    [Google Scholar]
  149. 149. 
    Yasui Y, Tsukamoto S, Sugaya T, Nishihama R, Wang Q et al. 2019. GEMMA CUP-ASSOCIATED MYB1, an ortholog of axillary meristem regulators, is essential in vegetative reproduction in Marchantia polymorpha. Curr. Biol. 29:3987–95
    [Google Scholar]
  150. 150. 
    Yi P, Goshima G 2020. Rho of plants GTPases and cytoskeletal elements control nuclear positioning and asymmetric cell division during Physcomitrella patens branching. Curr. Biol. 30:2860–68.e3
    [Google Scholar]
  151. 151. 
    Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y et al. 2013. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. PNAS 110:767–72
    [Google Scholar]
  152. 152. 
    Yoshida M, Yoshida K. 2011. Sperm chemotaxis and regulation of flagellar movement by Ca2+. Mol. Hum. Reprod. 17:457–65
    [Google Scholar]
  153. 153. 
    Zhang Y, McCormick S. 2007. A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana. PNAS 104:18830–35
    [Google Scholar]
  154. 154. 
    Zhou H, von Schwartzenberg K. 2020. Zygnematophyceae: from living algae collections to the establishment of future models. J. Exp. Bot. 71:3296–304
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-082520-094256
Loading
/content/journals/10.1146/annurev-arplant-082520-094256
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error