Skip to main content
Log in

John M. Tarbell: Artificial Heart and Mechanical Heart Valve Research Contributions

  • John Tarbell
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bachmann, C., G. Hugo, G. Rosenberg, S. Deutsch, A. A. Fontaine, and J. M. Tarbell. Fluid dynamics of a pediatric ventricular assist device. Artif. Organs 24:362–372, 2000; ([erratum appears in Artif. Organs 2000 24:989]).

    Google Scholar 

  2. Bachmann, C., V. Kini, S. Deutsch, A. A. Fontaine, and J. M. Tarbell. Mechanisms of cavitation and the formation of stable bubbles on the Björk-Shiley Monostrut prosthetic heart valve. J. Heart Valve Dis. 11(1):105–113, 2002.

    Google Scholar 

  3. Bachmann, C., M. Wilson, V. Kini, S. Deutsch, A. A. Fontaine, and J. M. Tarbell. The osmotic swelling characteristics of cardiac valve prostheses. J. Biomech. Eng. 122(4):453–454, 2000.

    Google Scholar 

  4. Baldwin, J. T., S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. Estimation of Reynolds stresses within the Penn State left ventricular assist device. ASAIO Trans. 36:M274–M278, 1990.

    Google Scholar 

  5. Baldwin, J. T., S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. LDA measurements of mean velocity and Reynolds stress fields within an artificial heart ventricle. J Biomech. Eng. 116:190–200, 1994.

    Google Scholar 

  6. Baldwin, J. T., S. Deutsch, H. L. Petrie, and J. M. Tarbell. Determination of principal Reynolds stresses in pulsatile flows after elliptical filtering of discrete velocity measurements. J. Biomech. Eng. 115:396–403, 1993.

    Google Scholar 

  7. Baldwin, J. T., J. M. Tarbell, S. Deutsch, and D. B. Geselowitz. Mean flow velocity patterns within a ventricular assist device. ASAIO Trans. 35:429–433, 1989.

    Google Scholar 

  8. Baldwin, J. T., J. M. Tarbell, S. Deutsch, and D. B. Geselowitz. Mean velocities and Reynolds stresses within regurgitant jets produced by tilting disc valves. ASAIO Trans. 37(3):M348–M349, 1991.

    Google Scholar 

  9. Baldwin, J. T., J. M. Tarbell, S. Deutsch, D. B. Geselowitz, and G. Rosenberg. Hot-film wall shear probe measurements inside a ventricular assist device. J. Biomech. Eng. 110:326–333, 1988.

    Google Scholar 

  10. Biancucci, B., S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. In vitro studies of gas bubble formation by mechanical heart valves. J. Heart Valve Dis. 8:186–196, 1999.

    Google Scholar 

  11. Brookshier, K. A., and J. M. Tarbell. Evaluation of a transparent blood analog fluid: aqueous Xanthan gum/glycerin. Biorheology 30:107–116, 1993.

    Google Scholar 

  12. Cysyk, J., J. B. Clark, R. Newswanger, C. S. Jhun, J. Izer, H. Finicle, J. Reibson, B. Doxtater, W. Weiss, and G. Rosenberg. Chronic in vivo test of a right heart replacement blood pump for failed Fontan circulation. ASAIO J. 65:593–600, 2019.

    Google Scholar 

  13. Francischelli, D. E., J. M. Tarbell, and D. B. Geselowitz. Local blood residence times in the Penn State artificial heart. Artif. Organs 15:218–224, 1991.

    Google Scholar 

  14. Garrison, L. A., T. C. Lamson, S. Deutsch, D. B. Geselowitz, R. P. Gaumond, and J. M. Tarbell. An in-vitro investigation of prosthetic heart valve cavitation in blood. J. Heart Valve Dis. 3(1):S8–S22, 1994; (discussion S22–4).

    Google Scholar 

  15. Garrison, L. A., T. C. Lamson, S. Deutsch, D. B. Geselowitz, R. P. Gaumond, and J. M. Tarbell. An in-vitro investigation of prosthetic heart valve cavitation in blood. J. Heart Valve Dis. 3(Suppl 1):S8–S22, 1994; (discussion S22-4).

    Google Scholar 

  16. Herbertson, L. H., K. B. Manning, V. Reddy, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. The effect of dissolved carbon dioxide on cavitation intensity in mechanical heart valves. J. Heart Valve Dis. 14:835–842, 2005.

    Google Scholar 

  17. Hochareon, P., K. B. Manning, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Diaphragm motion affects flow patterns in an artificial heart. Artif. Organs 27:1102–1109, 2003.

    Google Scholar 

  18. Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Fluid dynamic analysis of the 50cc Penn State artificial heart under physiological operating conditions using particle image velocimetry. J. Biomech. Eng. 126:585–593, 2004.

    Google Scholar 

  19. Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Wall shear-rate estimation within the 50cc Penn State artificial heart using particle image velocimetry. J. Biomech. Eng. 126:430–437, 2004.

    Google Scholar 

  20. Hochareon, P., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Correlation of in vivo clot deposition with the flow characteristics in the 50cc Penn State artificial heart: a preliminary study. ASIAO J. 50:537–542, 2004.

    Google Scholar 

  21. Huang, Z. J., C. L. Merkle, S. Abdallah, and J. M. Tarbell. Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding. J. Biomech. 27(4):391–402, 1994.

    Google Scholar 

  22. Jarvis, P., J. M. Tarbell, and J. A. Frangos. An in vitro analysis of an artificial heart. ASAIO Trans. 37:27–32, 1991.

    Google Scholar 

  23. Jhun, C. S., R. Newswanger, J. Cysyk, B. Lukic, W. Weiss, and G. Rosenberg. Tesla-based blood pump and its applications. J. Med. Device. 7(4):0409171–0409172, 2013.

    Google Scholar 

  24. Jhun, C. S., R. Newswanger, J. P. Cysyk, S. Ponnaluri, B. C. Good, K. B. Manning, and G. Rosenberg. Dynamics of blood flows in aortic stenosis: mild, moderate, and severe. ASAIO J 2020. https://doi.org/10.1097/mat.0000000000001296.

    Article  Google Scholar 

  25. Johansen, P., K. B. Manning, J. M. Tarbell, A. A. Fontaine, S. Deutsch, and H. Nygaard. A new method for evaluation of cavitation near mechanical heart valves. J. Biomech. Eng. 125:663–670, 2003.

    Google Scholar 

  26. Kafesian, R., M. Howanec, G. D. Ward, L. Diep, L. S. Wagstaff, and R. Rhee. Cavitation damage of pyrolytic carbon in mechanical heart valves. J. Heart Valve Dis. 3:52–57, 1994.

    Google Scholar 

  27. Kini, V., C. Bachmann, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Flow visualization in mechanical heart valves: occluder rebound and cavitation potential. Ann. Biomed. Eng. 28(4):431–441, 2000.

    Google Scholar 

  28. Kini, V., C. Bachmann, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Integrating particle image velocimetry and laser Doppler velocimetry measurements of the regurgitant flow field past mechanical heart valves. Artif. Organs 25(2):136–145, 2001.

    Google Scholar 

  29. Kofidis, T., S. Fischer, R. Leyh, H. Mair, M. Deckert, R. Haberl, A. Haverich, and B. Reichart. Clinical relevance of intracranial high intensity transient signals in patients following prosthetic aortic valve replacement. Eur. J. Cardiothorac. Surg. 21(1):22–26; discussion S22–4, 2002.

    Google Scholar 

  30. Lamson, T. C., O. S. Ojan, D. B. Geselowitz, and J. M. Tarbell. A two-phase fluid volume compensation chamber for an electric ventricular assist device. Artif. Organs 4(4):270–277, 1990.

    Google Scholar 

  31. Lamson, T. C., G. Rosenberg, S. Deutsch, D. B. Geselowitz, D. R. Stinebring, J. A. Frangos, and J. M. Tarbell. Relative blood damage in the three phases of a prosthetic heart valve flow cycle. ASAIO J. 39:M626–M633, 1993.

    Google Scholar 

  32. Lamson, T. C., D. R. Stinebring, S. Deutsch, G. Rosenberg, and J. M. Tarbell. Real-time in vitro observation of cavitation in a prosthetic heart valve. ASAIO Trans. 37(3):M351–M353, 1991.

    Google Scholar 

  33. Leo, H. L., L. P. Dasi, J. Carberry, H. Simon, and A. P. Yoganathan. Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann. Biomed. Eng. 34(6):936–952, 2006.

    Google Scholar 

  34. Lin, H. Y., B. Biancucci, S. Deutsch, A. A. Fontaine, and J. M. Tarbell. Observation and quantification of gas bubble formation on a mechanical heart valve. J. Biomech. Eng. 122:304–309, 2000.

    Google Scholar 

  35. Mann, K. A., S. Deutsch, J. M. Tarbell, D. B. Geselowitz, G. Rosenberg, and W. S. Pierce. An experimental study of Newtonian and non-Newtonian Flow dynamics in a ventricular assist device. J. Biomech. Eng. 109:139–147, 1987.

    Google Scholar 

  36. Mann, D. E., and J. M. Tarbell. Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models. Biorheology. 27(5):711–733, 1990.

    Google Scholar 

  37. Manning, K. B., V. Kini, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Regurgitant flow field characteristics of the St. Jude Bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif. Organs 27:840–846, 2003.

    Google Scholar 

  38. Manning, K. B., T. M. Przybysz, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Near field flow characteristics of the Bjork-Shiley Monostrut valve in a modified single shot valve chamber. ASAIO J. 51:133–138, 2005.

    Google Scholar 

  39. Maymir, J. C., S. Deutsch, R. Meyer, D. B. Geselowitz, and J. M. Tarbell. Effects of tilting disk valve gap width on regurgitant flow through an artificial heart mitral valve. Artif. Organs 21:1014–1025, 1997.

    Google Scholar 

  40. Maymir, J. C., S. Deutsch, R. Meyer, D. B. Geselowitz, and J. M. Tarbell. Mean velocity and Reynolds stress measurements in the regurgitant jets of tilting disk heart valves in an artificial heart environment. Ann. Biomed. Eng. 26:146–156, 1998.

    Google Scholar 

  41. Meyer, R. S., S. Deutsch, C. B. Bachmann, and J. M. Tarbell. Laser Doppler velocimetry and flow visualization studies in the regurgitant leakage flow region of three mechanical heart valves. Artif. Organs 25:292–299, 2001.

    Google Scholar 

  42. Meyer, R. S., S. Deutsch, J. C. Maymir, D. B. Geselowitz, and J. M. Tarbell. Three-component LDV Measurements in the regurgitant flow region of a Björk-Shiley Monostrut mitral valve. Ann. Biomed. Eng. 25:1081–1091, 1997.

    Google Scholar 

  43. Najjari, M. R., J. A. Hinke, K. V. Bulusu, and M. W. Plesniak. On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Exp. Fluids 57:96, 2016.

    Google Scholar 

  44. Nandy, S., and J. M. Tarbell. Flush-mounted hot film anemometer accuracy in pulsatile flow. J. Biomech. Eng. 108(3):228–231, 1986.

    Google Scholar 

  45. Rosenberg, G., C. A. Siedlecki, C. S. Jhun, W. J. Weiss, K. B. Manning, S. Deutsch, and W. S. Pierce. Acquired von Willebrand syndrome and blood pump design. Artif. Organs 42(12):1119–1124, 2018.

    Google Scholar 

  46. Roszelle, B. N., W. J. Weiss, S. Deutsch, and K. B. Manning. Flow visualization of a pediatric ventricular assist device during stroke volume reductions related to weaning. Ann. Biomed. Eng. 39(7):2046–2058, 2011.

    Google Scholar 

  47. Sankovic, J. M., J. R. Kadambi, M. Mehta, W. A. Smith, and M. P. Wernet. PIV investigations of the flow field in the volute of a rotary blood pump. J. Fluids Eng. 126(5):730–734, 2004.

    Google Scholar 

  48. Sharp, M. K., J. Cook, W. T. McCarvill, C. S. Lee, F. Arieta, and J. M. Tarbell. A blood analog for laser-induced photochemical anemometry. Biorheology. 33(6):471–476, 1996.

    Google Scholar 

  49. Sohn, K., K. B. Manning, A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Acoustic and visual characteristics of cavitation induced by mechanical heart valves. J. Heart Valve Dis. 14:551–558, 2005.

    Google Scholar 

  50. Tarbell, J. M., J. P. Gunshinan, D. B. Geselowitz, G. Rosenberg, K. K. Shung, and W. S. Pierce. Pulsed ultrasonic Doppler velocity measurements inside a left ventricular assist device. J. Biomech. Eng. 108:232–238, 1986.

    Google Scholar 

  51. Taylor, J. O., R. S. Meyer, S. Deutsch, and K. B. Manning. Development of a computational model for macroscopic predictions of device-induced thrombosis. Biomech. Model. Mechanobiol. 15(Suppl 1):1713–1731; ; discussion S22–4, 2016.

    Google Scholar 

  52. Taylor, J. O., K. P. Witmer, T. Neuberger, B. A. Craven, R. S. Meyer, S. Deutsch, and K. B. Manning. In vitro MRI experiments of thrombus growth and computational simulations of the associated thrombus surface shear stresses in a backward-facing step geometry. J. Biomech. Eng. 136(7):071012, 2014.

    Google Scholar 

  53. Taylor, J. O., L. Yang, S. Deutsch, and K. B. Manning. Development of a platelet adhesion transport equation for a computational thrombosis model. J. Biomech. 50:114–120, 2017.

    Google Scholar 

  54. Topper, S. R., M. A. Navitsky, R. B. Medvitz, E. G. Paterson, C. A. Siedlecki, M. J. Slattery, S. Deutsch, G. Rosenberg, and K. B. Manning. The use of fluid mechanics to predict regions of microscopic thrombus formation in pulsatile VADs. Cardio. Eng. Tech. 5(1):54–69, 2014.

    Google Scholar 

  55. Yang, L., T. Neuberger, and K. B. Manning. In vitro real-time magnetic resonance imaging for quantification of thrombosis. Magn. Reason. Mater. Phys. 2020. https://doi.org/10.1007/s10334-020-00872-2.

    Article  Google Scholar 

  56. Zapanta, C. M., E. G. Liszka, Jr, T. C. Lamson, D. R. Stinebring, S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. A method for real-time in vitro observation of cavitation on prosthetic heart valves. J. Biomech. Eng. 116(4):460–468, 1994.

    Google Scholar 

  57. Zapanta, C. M., D. R. Stinebring, S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. A comparison of the cavitation potential of prosthetic heart valves based on valve closing dynamics. J. Heart Valve Dis. 7(6):655–667, 1998.

    Google Scholar 

  58. Zapanta, C. M., D. R. Stinebring, D. S. Sneckenberger, S. Deutsch, D. B. Geselowitz, J. M. Tarbell, A. J. Snyder, G. Roseberg, W. J. Weiss, W. E. Pae, and W. S. Pierce. In vivo observation of cavitation on prosthetic heart valves. ASAIO J. 42:M550–M555, 1996.

    Google Scholar 

Download references

Acknowledgments

This work has been supported over 40 years of continuous National Institutes of Health funding from NHLBI Grants HL13426, HL20356, HL48652, HL62076, RR15930, HV48191, HV88105, and HL136369.

Author Contributions

SD, GR and KB Manning collectively contributed to writing, editing, and approving the manuscript submission.

Funding

Much of the work described here was funded through various grants from the National Institutes of Health.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Conflict of Interest

KB. Manning, S. Deutsch, and G. Rosenberg declare that they have no conflict of interest.

Animal Studies

No animal studies were carried out by the authors for this article.

Human Studies/Informed Consent

No human studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keefe B. Manning.

Additional information

Associate Editor Hanjoong Jo oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manning, K.B., Deutsch, S. & Rosenberg, G. John M. Tarbell: Artificial Heart and Mechanical Heart Valve Research Contributions. Cardiovasc Eng Tech 12, 9–14 (2021). https://doi.org/10.1007/s13239-020-00510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00510-x

Navigation