Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 10, 2021

Current updates on various treatment approaches in the early management of acute spinal cord injury

  • Brian Fiani , Mohammad Arsal Arshad , Emad Salman Shaikh , Aqsa Baig , Mudassir Farooqui , Muhammed Abubakar Ayub , Atif Zafar and Syed A. Quadri

Abstract

Spinal cord injury (SCI) is a debilitating condition which often leads to a severe disability and ultimately impact patient’s physical, psychological, and social well-being. The management of acute SCI has evolved over the couple of decades due to improved understanding of injury mechanisms and increasing knowledge of disease. Currently, the early management of acute SCI patient includes pharmacological agents, surgical intervention and newly experimental neuroprotective strategies. However, many controversial areas are still surrounding in the current treatment strategies for acute SCI, including the optimal timing of surgical intervention, early versus delayed decompression outcome benefits, the use of methylprednisolone. Due to the lack of consensus, the optimal standard of care has been varied across treatment centres. The authors have shed a light on the current updates on early treatment approaches and neuroprotective strategies in the initial management of acute SCI in order to protect the early neurologic injury and reduce the future disability.


Corresponding author: Brian Fiani, Department of Neurosurgery, Desert Regional Medical Center, 1150 N. Indian Canyon Drive, Palm Springs, CA92262, USA, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors have not received any funding for this work from any organization.

  3. Conflict of interest statement: The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

References

Aarabi, B., Walters, B.C., Dhall, S.S., Gelb, D.E., Hurlbert, R.J., Rozzelle, C.J., Ryken, T.C., Theodore, N., and Hadley, M.N. (2013). Subaxial cervical spine injury classification systems. Neurosurgery 72(Suppl 2): 170–186.10.1227/NEU.0b013e31828341c5Search in Google Scholar

Anderson, L.D. and D’Alonzo, R.T. (2004). Fractures of the odontoid process of the axis. 1974. J. Bone. Jt. Surg. Am. 86: 2081.10.2106/00004623-200409000-00032Search in Google Scholar

Azbill, R.D., Mu, X., and Springer, J.E. (2000). Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain Res. 871: 175–180.10.1016/S0006-8993(00)02430-6Search in Google Scholar

Batchelor, P.E., Wills, T.E., Skeers, P., Battistuzzo, C.R., Macleod, M.R., Howells, D.W., and Sena, E.S. (2013). Meta-analysis of pre-clinical studies of early decompression in acute spinal cord injury: a battle of time and pressure. PLoS One 8: e72659.10.1371/journal.pone.0072659Search in Google Scholar PubMed PubMed Central

Bracken, M.B. (2012). Steroids for acute spinal cord injury. Cochrane Database Syst. Rev. 1, CD001046.10.1002/14651858.CD001046Search in Google Scholar PubMed

Bracken, M.B., Shepard, M.J., Collins, W.F., Holford, T.R., Young, W., Baskin, D.S., Eisenberg, H.M., Flamm, E., Leo-Summers, L., and Maroon, J., et al.. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N. Engl. J. Med. 322: 1405–1411.10.1056/NEJM199005173222001Search in Google Scholar PubMed

Bracken, M.B., Shepard, M.J., Holford, T.R., Leo-Summers, L., Aldrich, E.F., Fazl, M., Fehlings, M., Herr, D.L., Hitchon, P.W., and Marshall, L.F., et al.. (1997). Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the third national acute spinal cord injury randomized controlled trial. National acute spinal cord injury study. J. Am. Med. Assoc. 277: 1597–1604.10.1001/jama.1997.03540440031029Search in Google Scholar

Braughler, J.M. and Hall, E.D. (1984). Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism. J. Neurosurg. 61: 290–295.10.3171/jns.1984.61.2.0290Search in Google Scholar PubMed

Brodke, D.S., Anderson, P.A., Newell, D.W., Grady, M.S., and Chapman, J.R. (2003). Comparison of anterior and posterior approaches in cervical spinal cord injuries. Clin. Spine Surg. 16: 229–235.10.1097/00024720-200306000-00001Search in Google Scholar PubMed

Campagnolo, D.I., Esquieres, R.E., and Kopacz, K.J. (1997). Effect of timing of stabilization on length of stay and medical complications following spinal cord injury. J. Spinal Cord Med. 20: 331–334.10.1080/10790268.1997.11719484Search in Google Scholar PubMed

Canseco, J.A., Schroeder, G.D., Patel, P.D., Grasso, G., Chang, M., Kandziora, F., Vialle, E.N., Oner, F.C., Schnake, K.J., and Dvorak, M.F., et al.. (2020). Regional and experiential differences in surgeon preference for the treatment of cervical facet injuries: a case study survey with the AO Spine Cervical Classification Validation Group. Eur. Spine J. 1–7.10.1007/s00586-020-06535-zSearch in Google Scholar PubMed

Cappuccino, A., Bisson, L.J., Carpenter, B., Marzo, J., Dietrich, W.D.3rd, and Cappuccino, H. (2010). The use of systemic hypothermia for the treatment of an acute cervical spinal cord injury in a professional football player. Spine 35: E57–62.10.1097/BRS.0b013e3181b9dc28Search in Google Scholar PubMed

Carlson, G.D., Gorden, C.D., Oliff, H.S., Pillai, J.J., and LaManna, J.C. (2003). Sustained spinal cord compression: part I: time-dependent effect on long-term pathophysiology. J. Bone Jt. Surg. Am. 85: 86–94.10.2106/00004623-200301000-00014Search in Google Scholar

Carlson, G.D., Minato, Y., Okada, A., Gorden, C.D., Warden, K.E., Barbeau, J.M., Biro, C.L., Bahnuik, E., Bohlman, H.H., and Lamanna, J.C. (1997). Early time-dependent decompression for spinal cord injury: vascular mechanisms of recovery. J. Neurotrauma 14: 951–962.10.1089/neu.1997.14.951Search in Google Scholar PubMed

Casha, S., Zygun, D., McGowan, M.D., Bains, I., Yong, V.W., and Hurlbert, R.J. (2012). Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135: 1224–1236.10.1093/brain/aws072Search in Google Scholar PubMed

Cianfoni, A. and Colosimo, C. (2011). In: Law, M., Som, P.M., and NT, P. (Eds.), Imaging of spine trauma in Problem solving in neuroradiology. Elsevier, Philadelphia, p. 476.10.1016/B978-0-323-05929-9.10013-9Search in Google Scholar

Clohisy, J.C., Akbarnia, B.A., Bucholz, R.D., Burkus, J.K., and Backer, R.J. (1992). Neurologic recovery associated with anterior decompression of spine fractures at the thoracolumbar junction (T12-L1). Spine 17: S325–330.10.1097/00007632-199208001-00019Search in Google Scholar PubMed

Côté, M.-P., Amin, A.A., Tom, V.J., and Houle, J.D. (2011). Peripheral nerve grafts support regeneration after spinal cord injury. Neurotherapeutics 8: 294–303.10.1007/s13311-011-0024-6Search in Google Scholar PubMed PubMed Central

Dalbayrak, S., Yaman, O., and Yilmaz, T. (2015). Current and future surgery strategies for spinal cord injuries. World J. Orthop. 6: 34–41.10.5312/wjo.v6.i1.34Search in Google Scholar PubMed PubMed Central

David, S. and Kroner, A. (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 12: 388–399.10.1038/nrn3053Search in Google Scholar PubMed

Delamarter, R.B., Sherman, J., and Carr, J.B. (1995). Pathophysiology of spinal cord injury. Recovery after immediate and delayed decompression. J. Bone Jt. Surg. Am. 77: 1042–1049.10.2106/00004623-199507000-00010Search in Google Scholar PubMed

Dididze, M., Green, B.A., Dietrich, W.D., Vanni, S., Wang, M.Y., and Levi, A.D. (2013). Systemic hypothermia in acute cervical spinal cord injury: a case-controlled study. Spinal Cord 51: 395–400.10.1038/sc.2012.161Search in Google Scholar

Dimar, J.R.2nd, Glassman, S.D., Raque, G.H., Zhang, Y.P., and Shields, C.B. (1999). The influence of spinal canal narrowing and timing of decompression on neurologic recovery after spinal cord contusion in a rat model. Spine 24: 1623–1633.10.1097/00007632-199908150-00002Search in Google Scholar

Ditunno, J.F., Cardenas, D.D., Formal, C., and Dalal, K. (2012). Advances in the rehabilitation management of acute spinal cord injury. Handb. Clin. Neurol. 109: 181–195.10.1016/B978-0-444-52137-8.00011-5Search in Google Scholar

Edwards, C.C. and Levine, A.M. (1986). Early rod-sleeve stabilization of the injured thoracic and lumbar spine. Orthop. Clin. North Am. 17: 121–145.10.1016/S0030-5898(20)30424-7Search in Google Scholar

Eismont, F.J., Arena, M.J., and Green, B.A. (1991). Extrusion of an intervertebral disc associated with traumatic subluxation or dislocation of cervical facets. Case report. J. Bone Jt. Surg. Am. 73: 1555–1560.10.2106/00004623-199173100-00014Search in Google Scholar

Esses, S.I., Botsford, D.J., and Kostuik, J.P. (1990). Evaluation of surgical treatment for burst fractures. Spine 15: 667–673.10.1097/00007632-199007000-00010Search in Google Scholar PubMed

Fan, L., Ou, D., Huang, X., Pang, M., Chen, X.X., Yang, B., and Wang, Q.Y. (2019). Surgery vs conservative treatment for type II and III odontoid fractures in a geriatric population. Medicine 98.10.1097/MD.0000000000010281Search in Google Scholar PubMed PubMed Central

Fan, B., Wei, Z., Yao, X., Shi, G., Cheng, X., Zhou, X., Zhou, H., Ning, G., Kong, X., and Feng, S. (2018). Microenvironment Imbalance of spinal cord injury. Cell Transplant. 27: 853–866.10.1177/0963689718755778Search in Google Scholar PubMed PubMed Central

Fehlings, M.G., Nakashima, H., Nagoshi, N., Chow, D.S., Grossman, R.G., and Kopjar, B. (2016). Rationale, design and critical end points for the Riluzole in Acute Spinal Cord Injury Study (RISCIS): a randomized, double-blinded, placebo-controlled parallel multi-center trial. Spinal Cord 54: 8–15.10.1038/sc.2015.95Search in Google Scholar PubMed PubMed Central

Fehlings, M.G. and Perrin, R.G. (2006). The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of recent clinical evidence. Spine 31: S28–35, discussion S36.10.1097/01.brs.0000217973.11402.7fSearch in Google Scholar PubMed

Fehlings, M.G., Tetreault, L.A., Wilson, J.R., Kwon, B.K., Burns, A.S., Martin, A.R., Hawryluk, G., and Harrop, J.S. (2017). A clinical practice guideline for the management of acute spinal cord injury: introduction, rationale, and scope. SAGE Publications, Los Angeles, CA.10.1177/2192568217703387Search in Google Scholar PubMed PubMed Central

Fehlings, M.G., Theodore, N., Harrop, J., Maurais, G., Kuntz, C., Shaffrey, C.I., Kwon, B.K., Chapman, J., Yee, A., and Tighe, A., et al.. (2011). A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J. Neurotrauma 28: 787–796.10.1089/neu.2011.1765Search in Google Scholar PubMed

Fehlings, M.G., Vaccaro, A., Wilson, J.R., Singh, A., Cadotte, W.C., Harrop, J.S., Aarabi, B., Shaffrey, C., Dvorak, M., and Fisher, C., et al.. (2012). Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7: e32037.10.1371/journal.pone.0032037Search in Google Scholar PubMed PubMed Central

Festoff, B.W., Ameenuddin, S., Arnold, P.M., Wong, A., Santacruz, K.S., and Citron, B.A. (2006). Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J. Neurochem. 97: 1314–1326.10.1111/j.1471-4159.2006.03799.xSearch in Google Scholar PubMed

Finnerup, N.B. and Baastrup, C. (2012). Spinal cord injury pain: mechanisms and management. Curr. Pain Headache Rep. 16: 207–216.10.1007/s11916-012-0259-xSearch in Google Scholar PubMed

Freund, P., Wannier, T., Schmidlin, E., Bloch, J., Mir, A., Schwab, M.E., and Rouiller, E.M. (2007). Anti-Nogo-A antibody treatment enhances sprouting of corticospinal axons rostral to a unilateral cervical spinal cord lesion in adult macaque monkey. J. Comp. Neurol. 502: 644–659.10.1002/cne.21321Search in Google Scholar PubMed

Furlan, J.C., Noonan, V., Cadotte, D.W., and Fehlings, M.G. (2011). Timing of decompressive surgery of spinal cord after traumatic spinal cord injury: an evidence-based examination of pre-clinical and clinical studies. J. Neurotrauma 28: 1371–1399.10.1089/neu.2009.1147Search in Google Scholar PubMed PubMed Central

Furlan, J.C., Sakakibara, B.M., Miller, W.C., and Krassioukov, A.V. (2013). Global incidence and prevalence of traumatic spinal cord injury. Can. J. Neurol. Sci. 40: 456–464.10.1017/S0317167100014530Search in Google Scholar

Garfin, S.R., Mowery, C.A., Guerra, J.Jr., and Marshall, L.F. (1985). Confirmation of the posterolateral technique to decompress and fuse thoracolumbar spine burst fractures. Spine 10: 218–223.10.1097/00007632-198504000-00005Search in Google Scholar PubMed

Gauthier, M.K., Kosciuczyk, K., Tapley, L., and Karimi-Abdolrezaee, S. (2013). Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury. Eur. J. Neurosci. 38: 2693–2715.10.1111/ejn.12268Search in Google Scholar PubMed

Geisler, F.H., Coleman, W.P., Grieco, G., Poonian, D., and Sygen Study, G. (2001). The Sygen multicenter acute spinal cord injury study. Spine 26: S87–98.10.1097/00007632-200112151-00015Search in Google Scholar PubMed

Gensel, J.C. and Zhang, B. (2015). Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 1619: 1–11.10.1016/j.brainres.2014.12.045Search in Google Scholar PubMed

Grauer, J.N., Shafi, B., Hilibrand, A.S., Harrop, J.S., Kwon, B.K., Beiner, J.M., Albert, T.J., Fehlings, M.G., and Vaccaro, A.R. (2005). Proposal of a modified, treatment-oriented classification of odontoid fractures. Spine J. 5: 123–129.10.1016/j.spinee.2004.09.014Search in Google Scholar PubMed

Grossman, R.G., Fehlings, M.G., Frankowski, R.F., Burau, K.D., Chow, D.S., Tator, C., Teng, A., Toups, E.G., Harrop, J.S., and Aarabi, B., et al.. (2014). A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J. Neurotrauma 31: 239–255.10.1089/neu.2013.2969Search in Google Scholar PubMed PubMed Central

Guha, A., Tator, C.H., Endrenyi, L., and Piper, I. (1987). Decompression of the spinal cord improves recovery after acute experimental spinal cord compression injury. Paraplegia 25: 324–339.10.1038/sc.1987.61Search in Google Scholar PubMed

Hadley, M.N., Walters, B.C., Grabb, P.A., Oyesiku, N.M., Przybylski, G.J., Resnick, D.K., and Ryken, T.C. (2002). Blood pressure management after acute spinal cord injury. Neurosurgery 50: S58-62.10.1097/00006123-200203001-00012Search in Google Scholar PubMed

Hall, E.D. and Springer, J.E. (2004). Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1: 80–100.10.1602/neurorx.1.1.80Search in Google Scholar PubMed PubMed Central

Hansebout, R.R. and Hansebout, C.R. (2014). Local cooling for traumatic spinal cord injury: outcomes in 20 patients and review of the literature. J. Neurosurg. Spine 20: 550–561.10.3171/2014.2.SPINE13318Search in Google Scholar PubMed

Harrington, P.R. (1962). Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J. Bone Jt. Surg. Am. 44-A: 591–610.10.2106/00004623-196244040-00001Search in Google Scholar

Haus, B.M. and Harris, M.B. (2008). Case report. Clin. Orthop. Relat. Res. 466: 1257–1261.10.1007/s11999-008-0143-5Search in Google Scholar PubMed PubMed Central

Hugenholtz, H., Cass, D.E., Dvorak, M.F., Fewer, D.H., Fox, R.J., Izukawa, D.M., Lexchin, J., Tuli, S., Bharatwal, N., and Short, C. (2002). High-dose methylprednisolone for acute closed spinal cord injury—only a treatment option. Can. J. Neurol. Sci. 29: 227–235.10.1017/S0317167100001992Search in Google Scholar

Hurlbert, R.J. (2000). Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J. Neurosurg. 93: 1–7.10.3171/spi.2000.93.1.0001Search in Google Scholar PubMed

Hurlbert, R.J., Hadley, M.N., Walters, B.C., Aarabi, B., Dhall, S.S., et al.. (2013). Pharmacological therapy for acute spinal cord injury. Neurosurgery 72(Suppl 2): 93–105.10.1227/NEU.0b013e31827765c6Search in Google Scholar PubMed

Jazayeri, S.B., Beygi, S., Shokraneh, F., Hagen, E.M., and Rahimi-Movaghar, V. (2015). Incidence of traumatic spinal cord injury worldwide: a systematic review. Eur. Spine J. 24: 905–918.10.1007/s00586-014-3424-6Search in Google Scholar PubMed

Jia, Y.F., Gao, H.L., Ma, L.J., and Li, J. (2015). Effect of nimodipine on rat spinal cord injury. Genet. Mol. Res. 14: 1269–1276.10.4238/2015.February.13.5Search in Google Scholar PubMed

Jo, A.S., Wilseck, Z., Manganaro, M.S., and Ibrahim, M. (2018). Seminars in ultrasound, CT and MRI, Vol. 39. Elsevier, pp. 532–550.10.1053/j.sult.2018.10.002Search in Google Scholar

Joaquim, A.F., de Almeida Bastos, D.C., Jorge Torres, H.H., and Patel, A.A. (2016). Thoracolumbar injury classification and injury severity score system: a literature review of its safety. Global Spine J. 6: 80–85.10.1055/s-0035-1554775Search in Google Scholar PubMed PubMed Central

Julien, T.D., Frankel, B., Traynelis, V.C., and Ryken, T.C. (2000). Evidence-based analysis of odontoid fracture management. Neurosurg. Focus 8: e1.10.3171/foc.2000.8.6.2Search in Google Scholar PubMed

Karimi-Abdolrezaee, S., Schut, D., Wang, J., and Fehlings, M.G. (2012). Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PLoS One 7: e37589.10.1371/journal.pone.0037589Search in Google Scholar PubMed PubMed Central

Kennedy, P., Frankel, H., Gardner, B., and Nuseibeh, I. (1997). Factors associated with acute and chronic pain following traumatic spinal cord injuries. Spinal Cord 35: 814–817.10.1038/sj.sc.3100569Search in Google Scholar PubMed

Kocis, J., Kelbl, M., Kocis, T., and Návrat, T. (2020). Percutaneous versus open pedicle screw fixation for treatment of type A thoracolumbar fractures. Eur. J. Trauma Emerg. Surg. 46: 147–152.10.1007/s00068-018-0998-4Search in Google Scholar PubMed

Kocis, J., Wendsche, P., Visna, P., Muzik, V., and Hart, R. (2004). [Isolated fractures of the atlas]. Acta Chir. Orthop. Traumatol. Cech. 71: 50–55.Search in Google Scholar

Kong, W., Yang, X., Li, Z., Hu, B., and Song, Y. (2020). Analysis of the cervical sagittal alignment in patients with unstable hangman fracture under C2∼ 3 anterior discectomy and fusion. World Neurosurg. 137: e1–e8.10.1016/j.wneu.2019.08.147Search in Google Scholar

Kumar, A., Aujla, R., and Lee, C. (2015). The management of thoracolumbar burst fractures: a prospective study between conservative management, traditional open spinal surgery and minimally interventional spinal surgery. Springerplus 4: 204.10.1186/s40064-015-0960-4Search in Google Scholar

La Rosa, G., Conti, A., Cardali, S., Cacciola, F., and Tomasello, F. (2004). Does early decompression improve neurological outcome of spinal cord injured patients? Appraisal of the literature using a meta-analytical approach. Spinal Cord 42: 503–512.10.1038/sj.sc.3101627Search in Google Scholar

Lazarov-Spiegler, O., Solomon, A.S., and Schwartz, M. (1998). Peripheral nerve-stimulated macrophages simulate a peripheral nerve-like regenerative response in rat transected optic nerve. Glia 24: 329–337.10.1002/(SICI)1098-1136(199811)24:3<329::AID-GLIA7>3.0.CO;2-XSearch in Google Scholar

Lee, D.-Y., Park, Y.-J., Song, S.-Y., Hwang, S.-C., Kim, K.-T., and Kim, D.-H. (2018). The importance of early surgical decompression for acute traumatic spinal cord injury. Clin. Orthop. Surg. 10.10.4055/cios.2018.10.4.448Search in Google Scholar

Lee, J.Y., Vaccaro, A.R., Lim, M.R., Oner, F.C., Hulbert, R.J., Hedlund, R., Fehlings, M.G., Arnold, P., Harrop, J., Bono, C.M., et al.. (2005a). Thoracolumbar injury classification and severity score: a new paradigm for the treatment of thoracolumbar spine trauma. J. Orthop. Sci. 10: 671–675.10.1007/s00776-005-0956-ySearch in Google Scholar

Lee, J.Y., Vaccaro, A.R., Lim, M.R., Oner, F.C., Hulbert, R.J., Hedlund, R., Fehlings, M.G., Arnold, P., Harrop, J., Bono, C.M., et al.. (2005b). Thoracolumbar injury classification and severity score: a new paradigm for the treatment of thoracolumbar spine trauma. J. Orthop. Sci. 10: 671–675.10.1007/s00776-005-0956-ySearch in Google Scholar

Lee, T.T., Green, B.A., and Petrin, D.R. (1998). Treatment of stable burst fracture of the atlas (Jefferson fracture) with rigid cervical collar. Spine 23: 1963–1967.10.1097/00007632-199809150-00008Search in Google Scholar

Lee, S.M., Yune, T.Y., Kim, S.J., Park, D.W., Lee, Y.K., Kim, Y.C., Oh, Y.J., Markelonis, G.J., and Oh, T.H. (2003). Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J. Neurotrauma 20: 1017–1027.10.1089/089771503770195867Search in Google Scholar

Levi, A.D., Casella, G., Green, B.A., Dietrich, W.D., Vanni, S., Jagid, J., and Wang, M.Y. (2010). Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury. Neurosurgery 66: 670–677.10.1227/01.NEU.0000367557.77973.5FSearch in Google Scholar

Levi, A.D., Green, B.A., Wang, M.Y., Dietrich, W.D., Brindle, T., Vanni, S., Casella, G., Elhammady, G., and Jagid, J. (2009). Clinical application of modest hypothermia after spinal cord injury. J. Neurotrauma 26: 407–415.10.1089/neu.2008.0745Search in Google Scholar

Levi, L., Wolf, A., and Belzberg, H. (1993). Hemodynamic parameters in patients with acute cervical cord trauma: description, intervention, and prediction of outcome. Neurosurgery 33: 1007–1016, discussion 16-7.10.1227/00006123-199312000-00008Search in Google Scholar

Levi, L., Wolf, A., Rigamonti, D., Ragheb, J., Mirvis, S., and Robinson, W.L. (1991). Anterior decompression in cervical spine trauma: does the timing of surgery affect the outcome? Neurosurgery 29: 216–222.10.1097/00006123-199108000-00008Search in Google Scholar

Levine, A.M. and Edwards, C.C. (1986). Treatment of injuries in the C1-C2 complex. Orthop. Clin. North Am. 17: 31–44.10.1016/S0030-5898(20)30416-8Search in Google Scholar

Li, X.-F., Dai, L.-Y., Lu, H., and Chen, X.-D. (2005). A systematic review of the management of hangman’s fractures. Eur. Spine J. 15: 257–269.10.1007/s00586-005-0918-2Search in Google Scholar PubMed PubMed Central

Lin, B., Xu, Y., Zhang, B., He, Y., Yan, Y., and He, M.C. (2014). MEK inhibition reduces glial scar formation and promotes the recovery of sensorimotor function in rats following spinal cord injury. Exp. Ther. Med. 7: 66–72.10.3892/etm.2013.1371Search in Google Scholar PubMed PubMed Central

Liu, B., Wu, J., Wang, H., and Tian, W. (2020). Robot-assisted C2 pedicle screw Placement for the treatment of hangman’s fracture. In: Navigation assisted Robotics in Spine and trauma surgery. Springer, pp. 55–64.10.1007/978-981-15-1846-1_8Search in Google Scholar

Lo, T.P.Jr., Cho, K.S., Garg, M.S., Lynch, M.P., Marcillo, A.E., Koivisto, D.L., Stagg, M., Abril, R.M., Patel, S., and Dietrich, W.D. (2009). Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. J. Comp. Neurol. 514: 433–448.10.1002/cne.22014Search in Google Scholar PubMed

Lu, K., Liang, C.L., Liliang, P.C., Yang, C.H., Cho, C.L., Weng, H.C., Tsai, Y.D., Wang, K.W., and Chen, H.J. (2010). Inhibition of extracellular signal-regulated kinases 1/2 provides neuroprotection in spinal cord ischemia/reperfusion injury in rats: relationship with the nuclear factor-kappaB-regulated anti-apoptotic mechanisms. J. Neurochem. 114: 237–246.10.1111/j.1471-4159.2010.06747.xSearch in Google Scholar PubMed

Matsumoto, T., Tamaki, T., Kawakami, M., Yoshida, M., Ando, M., and Yamada, H. (2001). Early complications of high-dose methylprednisolone sodium succinate treatment in the follow-up of acute cervical spinal cord injury. Spine 26: 426–430.10.1097/00007632-200102150-00020Search in Google Scholar PubMed

McEvoy, R.D. and Bradford, D.S. (1985). The management of burst fractures of the thoracic and lumbar spine. Experience in 53 patients. Spine 10: 631–637.10.1097/00007632-198509000-00007Search in Google Scholar PubMed

McGuire, R.A.Jr. and Harkey, H.L. (1995). Unstable Jefferson’s fracture treated with transarticular screws. Orthopedics 18: 207–209.10.3928/0147-7447-19950201-21Search in Google Scholar PubMed

Metz, G.A., Curt, A., van de Meent, H., Klusman, I., Schwab, M.E., and Dietz, V. (2000). Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J. Neurotrauma 17: 1–17.10.1089/neu.2000.17.1Search in Google Scholar PubMed

Mirza, S.K., Krengel, W.F.3rd, Chapman, J.R., Anderson, P.A., Bailey, J.C., Grady, M.S., and Yuan, H.A. (1999). Early versus delayed surgery for acute cervical spinal cord injury. Clin. Orthop. Relat. Res. 104–114.10.1097/00003086-199902000-00011Search in Google Scholar PubMed

Moon, M.S., Moon, J.L., Moon, Y.W., Sun, D.H., and Choi, W.T. (2001). Traumatic spondylolisthesis of the axis: 42 cases. Bull. Hosp. Jt. Dis. 60: 61–66.Search in Google Scholar

Nessim, C., Sideris, L., Turcotte, S., Vafiadis, P., Lapostole, A.C., Simard, S., Koch, P., Fortier, L.P., and Dube, P. (2013). The effect of fluid overload in the presence of an epidural on the strength of colonic anastomoses. J. Surg. Res. 183: 567–573.10.1016/j.jss.2013.03.030Search in Google Scholar PubMed

Noonan, V.K., Fingas, M., Farry, A., Baxter, D., Singh, A., Fehlings, M.G., and Dvorak, M.F. (2012). Incidence and prevalence of spinal cord injury in Canada: a national perspective. Neuroepidemiology 38: 219–226.10.1159/000336014Search in Google Scholar PubMed

Otani, K., Abe, H., and Kadoya, S. (1994). Beneficial effect of methylprednisolone sodium succinate in the treatment of acute spinal cord injury (translation of Japanese). Sekitsui Sekizui: 633–647.Search in Google Scholar

Park, S.I., Lim, J.Y., Jeong, C.H., Kim, S.M., Jun, J.A., Jeun, S.S., and Oh, W.I. (2012). Human umbilical cord blood-derived mesenchymal stem cell therapy promotes functional recovery of contused rat spinal cord through enhancement of endogenous cell proliferation and oligogenesis. J. Biomed. Biotechnol. 2012: 362473.10.1155/2012/362473Search in Google Scholar PubMed PubMed Central

Parker, J.W., Lane, J.R., Karaikovic, E.E., and Gaines, R.W. (2000). Successful short-segment instrumentation and fusion for thoracolumbar spine fractures: a consecutive 41/2-year series. Spine 25: 1157–1170.10.1097/00007632-200005010-00018Search in Google Scholar PubMed

Pointillart, V., Petitjean, M.E., Wiart, L., Vital, J.M., Lassie, P., Thicoipé, M., and Dabadie, P. (2000). Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord 38: 71–76.10.1038/sj.sc.3100962Search in Google Scholar PubMed

Pollard, M.E. and Apple, D.F. (2003). Factors associated with improved neurologic outcomes in patients with incomplete tetraplegia. Spine 28: 33–39.10.1097/00007632-200301010-00009Search in Google Scholar PubMed

Pommier, B., Ollier, E., Pelletier, J.-B., Castel, X., Vassal, F., and Tetard, M.-C. (2020). Conservative versus surgical treatment for odontoid fracture: Is the surgical treatment harmful? Systematic review and meta-analysis. World Neurosurgery.10.1016/j.wneu.2020.02.169Search in Google Scholar PubMed

Quadri, S.A., Farooqui, M., Ikram, A., Zafar, A., Khan, M.A., Suriya, S.S., Claus, C.F., Fiani, B., Rahman, M., and Ramachandran, A., et al.. (2018). Recent update on basic mechanisms of spinal cord injury. Neurosurg. Rev. 43: 425–441.10.1007/s10143-018-1008-3Search in Google Scholar PubMed

Rapalino, O., Lazarov-Spiegler, O., Agranov, E., Velan, G.J., Yoles, E., Fraidakis, M., Solomon, A., Gepstein, R., Katz, A., and Belkin, M., et al.. (1998). Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4: 814–821.10.1038/nm0798-814Search in Google Scholar PubMed

Ren, C., Qin, R., Wang, P., and Wang, P. (2020). Comparison of anterior and posterior approaches for treatment of traumatic cervical dislocation combined with spinal cord injury: minimum 10-year follow-up. Sci. Rep. 10: 1–8.10.1038/s41598-020-67265-2Search in Google Scholar PubMed PubMed Central

Ryken, T.C., Hurlbert, R.J., Hadley, M.N., Aarabi, B., Dhall, S.S., Gelb, D.E., Rozzelle, C.J., Theodore, N., and Walters, B.C. (2013). The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery 72(Suppl 2): 84–92.10.1227/NEU.0b013e318276ee16Search in Google Scholar PubMed

Selassie, A., Cao, Y., and Saunders, L.L. (2015). Epidemiology of traumatic spinal cord injury among persons older than 21 Years: a population-based study in South Carolina, 1998–2012. Top. Spinal Cord Inj. Rehabil. 21: 333–344.10.1310/sci2015-313Search in Google Scholar

Shank, C.D., Walters, B.C., and Hadley, M.N. (2019). Current topics in the management of acute traumatic spinal cord injury. Neurocrit. Care 30: 261–271.10.1007/s12028-018-0537-5Search in Google Scholar PubMed

Siebenga, J., Leferink, V.J., Segers, M.J., Elzinga, M.J., Bakker, F.C., Haarman, H.J., Rommens, P.M., ten Duis, H.J., and Patka, P. (2006). Treatment of traumatic thoracolumbar spine fractures: a multicenter prospective randomized study of operative versus nonsurgical treatment. Spine 31: 2881–2890.10.1097/01.brs.0000247804.91869.1eSearch in Google Scholar PubMed

Singh, A., Tetreault, L., Kalsi-Ryan, S., Nouri, A., and Fehlings, M.G. (2014). Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 6: 309–331.10.2147/CLEP.S68889Search in Google Scholar PubMed PubMed Central

Song, J., Yi, P., Wang, Y., Gong, L., Sun, Y., Yang, F., Tang, X., and Tan, M. (2020). Short-term posterior C1–C2 pedicle screw fixation without fusion to treat type II odontoid fracture among people under 60 years. Arch. Orthop. Trauma Surg. 1–9.10.1007/s00402-020-03641-xSearch in Google Scholar PubMed

Spence, K.F.Jr., Decker, S., and Sell, K.W. (1970). Bursting atlantal fracture associated with rupture of the transverse ligament. J. Bone Jt. Surg. Am. 52: 543–549.10.2106/00004623-197052030-00013Search in Google Scholar

Squair, J.W., Belanger, L.M., Tsang, A., Ritchie, L., Mac-Thiong, J.M., Parent, S., Christie, S., Bailey, C., Dhall, S., and Street, J., et al.. (2017). Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology 89: 1660–1667.10.1212/WNL.0000000000004519Search in Google Scholar PubMed

Stulik, J. and Krbec, M. (2003). Injuries of the atlas. Acta Chir. Orthop. Traumatol. Cech. 70: 274–278.Search in Google Scholar

Tator, C.H., Hashimoto, R., Raich, A., Norvell, D., Fehlings, M.G., Harrop, J.S., Guest, J., Aarabi, B., and Grossman, R.G. (2012). Translational potential of preclinical trials of neuroprotection through pharmacotherapy for spinal cord injury. J. Neurosurg. Spine 17: 157–229.10.3171/2012.5.AOSPINE12116Search in Google Scholar PubMed

Teng, Y.D., Mocchetti, I., Taveira-DaSilva, A.M., Gillis, R.A., and Wrathall, J.R. (1999). Basic fibroblast growth factor increases long-term survival of spinal motor neurons and improves respiratory function after experimental spinal cord injury. J. Neurosci. 19: 7037–7047.10.1523/JNEUROSCI.19-16-07037.1999Search in Google Scholar

Tom, V.J. and Houlé, J.D. (2008). Intraspinal microinjection of chondroitinase ABC following injury promotes axonal regeneration out of a peripheral nerve graft bridge. Exp. Neurol. 211: 315–319.10.1016/j.expneurol.2008.01.021Search in Google Scholar PubMed PubMed Central

Tom, V.J., Sandrow-Feinberg, H.R., Miller, K., Domitrovich, C., Bouyer, J., Zhukareva, V., Klaw, M.C., Lemay, M.A., and Houlé, J.D. (2013). Exogenous BDNF enhances the integration of chronically injured axons that regenerate through a peripheral nerve grafted into a chondroitinase-treated spinal cord injury site. Exp. Neurol. 239: 91–100.10.1016/j.expneurol.2012.09.011Search in Google Scholar PubMed PubMed Central

Turtle, J., Kantor, A., Spina, N.T., France, J.C., and Lawrence, B.D. (2020). Hangman’s fracture. Clin. Spine Surg. 33: 345–354.10.1097/BSD.0000000000001093Search in Google Scholar PubMed

Tykocki, T., Poniatowski, L., Czyz, M., Koziara, M., and Wynne-Jones, G. (2017). Intraspinal pressure monitoring and extensive duroplasty in the acute phase of traumatic spinal cord injury: a systematic review. World Neurosurg. 105: 145–152.10.1016/j.wneu.2017.05.138Search in Google Scholar PubMed

Vaccaro, A.R., Daugherty, R.J., Sheehan, T.P., Dante, S.J., Cotler, J.M., Balderston, R.A., Herbison, G.J., and Northrup, B.E. (1997). Neurologic outcome of early versus late surgery for cervical spinal cord injury. Spine 22: 2609–2613.10.1097/00007632-199711150-00006Search in Google Scholar PubMed

Vaccaro, A.R., Hulbert, R.J., Patel, A.A., Fisher, C., Dvorak, M., Lehman, R.A.Jr., Anderson, P, Harrop, J, Oner, FC, Arnold, P., and Fehlings, M., et al.. (2007). The subaxial cervical spine injury classification system: a novel approach to recognize the importance of morphology, neurology, and integrity of the disco-ligamentous complex. Spine 32: 2365–2374.10.1097/BRS.0b013e3181557b92Search in Google Scholar PubMed

Vaccaro, A.R., Lehman, R.A.Jr., Hurlbert, R.J., Anderson, P.A., Harris, M., Hedlund, R., Harrop, J., Dvorak, M., Wood, K., and Fehlings, M.G., et al.. (2005). A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine 30: 2325–2333.10.1097/01.brs.0000182986.43345.cbSearch in Google Scholar PubMed

Walters, B.C., Hadley, M.N., Hurlbert, R.J., Aarabi, B., Dhall, S.S., Gelb, D.E., Harrigan, M.R., Rozelle, C.J., Ryken, T.C., and Theodore, N. (2013). Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery 60: 82–91.10.1227/01.neu.0000430319.32247.7fSearch in Google Scholar PubMed

White, A.A.3rd, Panjabi, M.M., and Thomas, C.L. (1977). The clinical biomechanics of kyphotic deformities. Clin. Orthop. Relat. Res.: 8–17.10.1097/00003086-197710000-00003Search in Google Scholar

White, A.A. and Panjabi, M.M. (1990). The problem of clinical in stability in the human spine: a systematic approach. In: Clinical Biomechanics of the spine. Lippincott,Philadelphia pp. 277–378.Search in Google Scholar

Whitesides, T.E.Jr. (1977). Traumatic kyphosis of the thoracolumbar spine. Clin. Orthop. Relat. Res.: 78–92.10.1097/00003086-197710000-00011Search in Google Scholar

Wilson, J.R. and Fehlings, M.G. (2011). Emerging approaches to the surgical management of acute traumatic spinal cord injury. Neurotherapeutics 8: 187–194.10.1007/s13311-011-0027-3Search in Google Scholar PubMed PubMed Central

Wilson, J.R., Singh, A., Craven, C., Verrier, M.C., Drew, B., Ahn, H., Ford, M., and Fehlings, M.G. (2012). Early versus late surgery for traumatic spinal cord injury: the results of a prospective Canadian cohort study. Spinal Cord 50: 840–843.10.1038/sc.2012.59Search in Google Scholar PubMed

Wing, P.C. (2008). Early acute management in adults with spinal cord injury: a clinical practice guideline for health-care providers. Who should read it? J. Spinal Cord Med. 31: 360.10.1080/10790268.2008.11760737Search in Google Scholar PubMed PubMed Central

Wood, K., Buttermann, G., Mehbod, A., Garvey, T., Jhanjee, R., and Sechriest, V. (2003). Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit: a prospective, randomized study. JBJS 85: 773–781.10.2106/00004623-200305000-00001Search in Google Scholar PubMed

Wyndaele, M. and Wyndaele, J.J. (2006). Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 44: 523–529.10.1038/sj.sc.3101893Search in Google Scholar PubMed

Received: 2020-08-05
Accepted: 2020-12-18
Published Online: 2021-02-10
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2020-0148/html
Scroll to top button