Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 8, 2021

Psychedelic drugs and perception: a narrative review of the first era of research

  • Jacob S. Aday , Julia R. Wood , Emily K. Bloesch and Christopher C. Davoli

Abstract

Psychedelic drugs are well-known for transiently altering perception, and in particular, for their visual effects. Although scientific interest into the substances’ effects on perception increased during the first era of psychedelic research during the early to mid-20th century, there is currently no source where these findings have been synthesized. In addressing this gap, the current narrative review found that psychedelics were examined for their influences across all levels of the visual system (e.g., retinal, cortical, subcortical, simple visual processing, complex imagery, hallucinations). Psychedelics were also shown to affect auditory discrimination/generalization, neural correlates of auditory processing, and led to auditory hallucinations in subsets of participants. Several studies demonstrated that psychedelics can distort representations of body schema and time perception. Concerns regarding methodological standards of this era are a limitation to the findings and are discussed. Collectively, this review preserves and increases the accessibility of the work done by pioneering psychedelic/perception researchers, synthesizes findings, and critically analyzes areas of discrepancy to inform future studies.


Corresponding author: Jacob S. Aday, Department of Psychology, Central Michigan University, Mount Pleasant, MI48858, USA, E-mail:

Acknowledgments

We would like to thank Nathan H. Houle, D. J. Marcel Jacobs, Katarina L. I. Woodman, Romualdo R. Ancog, and Melanie J. Piedra for assistance with the literature review.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abramson, H.A., Jarvik, M.E., and Hirsch, M.W. (1955a). Lysergic acid diethylamide (LSD-25): X. Effect on reaction time to auditory and visual stimuli. J. Psychol. 40: 39–52, https://doi.org/10.1080/00223980.1955.9712962.Search in Google Scholar

Abramson, H.A., Kornetsky, C., Jarvik, M.E., Kaufman, M.R., and Ferguson, M.W. (1955b). Lysergic acid diethylamide (LSD-25): XI. Content analysis of clinical reactions. J. Psychol. 40: 53–60, https://doi.org/10.1080/00223980.1955.9712963.Search in Google Scholar

Aday, J.S., Bloesch, E.K., and Davoli, C.C. (2020a). 2019: a year of expansion in psychedelic research, industry, and deregulation. Drug Sci. Policy Law 6: 1–6, https://doi.org/10.1177/2050324520974484.Search in Google Scholar

Aday, J.S., Bloesch, E.K., and Davoli, C.C. (2020b). Can psychedelic drugs attenuate age-related changes in cognition and affect? J. Cogn. Enhanc. 4: 219–227, https://doi.org/10.1007/s41465-019-00151-6.Search in Google Scholar

Aday, J.S., Davoli, C.C., and Bloesch, E.K. (2019). Slowhand: does time perception change in peri-hand space? Psychon. Bull. Rev. 26: 1289–1294, https://doi.org/10.3758/s13423-019-01609-6.Search in Google Scholar

Aday, J.S., Mitzkovitz, C.M., Bloesch, E.K., Davoli, C.C., and Davis, A.K. (2020c). Long-term effects of psychedelic drugs: a systematic review. Neurosci. Biobehav. Rev. 113: 179–189, https://doi.org/10.1016/j.neubiorev.2020.03.017.Search in Google Scholar

Anderson, E.W. and Rawnsley, K. (1954). Clinical studies of lysergic acid diethylamide. Monatsschr. Psychiatr. Neurol. 128: 38–55, https://doi.org/10.1159/000139775.Search in Google Scholar

Apter, J.T. and Pfeiffer, C.C. (1956). Effect of hallucinogenic drugs on the electroretinogram. Am. J. Ophthalmol. 42: 206–211, https://doi.org/10.1016/0002-9394(56)90372-5.Search in Google Scholar

Arnold, O.H., Burian, K., Gestring, G.F., Presslich, O., and Saletu, B. (1971). The effect of DMT and LSD on acoustic evoked potentials. Electroencephalogr. Clin. Neurophysiol. 30: 170.Search in Google Scholar

Aronson, H., Silverstein, A.B., and Klee, G.D. (1959). Influence of lysergic acid diethylamide (LSD-25) on subjective time. AMA Arch. Gen. Psychiatry 1: 37–40, https://doi.org/10.1001/archpsyc.1959.03590050037003.Search in Google Scholar

Bachini, O., Villar, J.I., Prieto, S., and Garcia, E. (1965). Effects of psychodrugs upon sensory inflow: I. Changes provoked by LSD-25 on the averaged visual evoked responses in man. Acta Neurol. Latinoam. 11: 383–390.Search in Google Scholar

Barber, T.X. (1971). Imagery and “hallucinations”: effects of LSD contrasted with the effects of “hypnotic” suggestions. In: Segal, S.J. (Ed.). Imagery: current cognitive approaches. Academic Press, Cambridge, pp. 101–129.10.1016/B978-0-12-635450-8.50012-1Search in Google Scholar

Barrett, F.S., Bradstreet, M.P., Leoutsakos, J.M.S., Johnson, M.W., and Griffiths, R.R. (2016). The Challenging Experience Questionnaire: characterization of challenging experiences with psilocybin mushrooms. J. Psychopharmacol. 30: 1279–1295, https://doi.org/10.1177/0269881116678781.Search in Google Scholar

Barrett, F.S., Carbonaro, T.M., Hurwitz, E., Johnson, M.W., and Griffiths, R.R. (2018a). Double-blind comparison of the two hallucinogens psilocybin and dextromethorphan: effects on cognition. Psychopharmacology 235: 2915–2927, https://doi.org/10.1007/s00213-018-4981-x.Search in Google Scholar

Barrett, F.S., Preller, K.H., and Kaelen, M. (2018b). Psychedelics and music: neuroscience and therapeutic implications. Int. Rev. Psychiatry 30: 350–362, https://doi.org/10.1080/09540261.2018.1484342.Search in Google Scholar

Beliveau, V., Ganz, M., Feng, L., Ozenne, B., Højgaard, L., Fisher, P.M., Svarer, C., Greve, D.N., and Knudsen, G.M. (2017). A high-resolution in vivo atlas of the human brain’s serotonin system. J. Neurosci. 37: 120–128, https://doi.org/10.1523/jneurosci.2830-16.2017.Search in Google Scholar

Berkovich-Ohana, A., Dor-Ziderman, Y., Glicksohn, J., and Goldstein, A. (2013). Alterations in the sense of time, space, and body in the mindfulness-trained brain: a neurophenomenologically-guided MEG study.Front. Psychol. 4, https://doi.org/10.3389/fpsyg.2013.00912.Search in Google Scholar

Bertino, J.R., Klee, G.D., Collier, D., and Weintraub, W. (1960). Clinical studies with dibenzyline and lysergic acid diethylamide. J. Clin. Exp. Psychopathol. 21: 293–299.Search in Google Scholar

Blough, D.S. (1957). Effect of lysergic acid diethylamide on absolute visual threshold of the pigeon. Science 126: 304–305, https://doi.org/10.1126/science.126.3268.304.Search in Google Scholar

Boardman, W.K., Goldstone, S., and Lhamon, T. (1957). Effects of lysergic acid diethylamide (LSD) on the time sense of normals. AMA Arch. Neurol. Psychiatry 78: 321–324, https://doi.org/10.1001/archneurpsyc.1957.02330390103013.Search in Google Scholar

Brogaard, B. (2013). Serotonergic hyperactivity as a potential factor in developmental, acquired and drug-induced synesthesia. Front. Hum. Neurosci. 7, https://doi.org/10.3389/fnhum.2013.00657.Search in Google Scholar

Brown, B.B. (1966). Specificity of LEG photic flicker responses to color as related to visual imagery ability. Psychophysiology 2: 197–207, https://doi.org/10.1111/j.1469-8986.1966.tb02643.x.Search in Google Scholar

Brown, B.B. (1968). Subjective and EEG responses to LSD in visualizer and non-visualizer subjects. Electroencephalogr. Clin. Neurophysiol. 25: 372–379, https://doi.org/10.1016/0013-4694(68)90179-x.Search in Google Scholar

Brown, D.J. (2007). Psychedelic healing? Sci. Am. Mind 18: 66–71, https://doi.org/10.1038/scientificamericanmind1207-66.Search in Google Scholar

Brown, K. and Cooper, S.J. (1975). Effects of lysergic acid diethylamide on auditory and visual discrimination in the rat. Br. J. Pharmacol. 54: 234.Search in Google Scholar

Buno, W., Villar, J.I., Tejerina, W., and Garcia-Austt, E. (1970). Effect of LSD-25, chloropromazine and metedrine upon visual evoked response in cats. Acta Neurol. Latinoam. 16: 64–73.Search in Google Scholar

Caldwell, D.F. and Domino, E.F. (1967). Effect of LSD-25 in the rat on operant approach to a visual or auditory conditioned stimulus. Psychol. Rep. 20: 199–205, https://doi.org/10.2466/pr0.1967.20.1.199.Search in Google Scholar

Carhart-Harris, R.L. and Friston, K.J. (2019). REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharmacol. Rev. 71: 316–344, https://doi.org/10.1124/pr.118.017160.Search in Google Scholar

Carhart-Harris, R.L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., Murphy, K., Tagliazucchi, E., Schenberg, E.E., Nest, T., Orban, C., et al.. (2016). Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc. Natl. Acad. Sci. U.S.A. 113: 4853–4858, https://doi.org/10.1073/pnas.1518377113.Search in Google Scholar

Carhart-Harris, R.L., Roseman, L., Bolstridge, M., Demetriou, L., Pannekoek, J.N., Wall, M.B. et al.. (2017). Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci. Rep. 7: 13187, https://doi.org/10.1038/s41598-017-13282-7.Search in Google Scholar

Carlson, V.R. (1958). Effect of lysergic acid diethylamide (LSD-25) on the absolute visual threshold. J. Comp. Physiol. Psychol. 51: 528–531, https://doi.org/10.1037/h0044098.Search in Google Scholar

Carter, O.L., Hasler, F., Pettigrew, J.D., Wallis, G.M., Liu, G.B., and Vollenweider, F.X. (2007). Psilocybin links binocular rivalry switch rate to attention and subjective arousal levels in humans. Psychopharmacology 195: 415–424, https://doi.org/10.1007/s00213-007-0930-9.Search in Google Scholar

Carter, O.L., Pettigrew, J.D., Hasler, F., Wallis, G.M., Liu, G.B., Hell, D., and Vollenweider, F.X. (2005). Modulating the rate and rhythmicity of perceptual rivalry alternations with the mixed 5-HT 2A and 5-HT 1A agonist psilocybin. Neuropsychopharmacology 30: 1154–1162, https://doi.org/10.1038/sj.npp.1300621.Search in Google Scholar

Coyle, J.R., Presti, D.E., and Baggott, M.J. (2012). Quantitative analysis of narrative reports of psychedelic drugs. arXiv preprint arXiv:1206.0312.Search in Google Scholar

Da Fonesca, J.S., Fialho, M.L., and Gil, M.T. (1965). Evoked potentials and visual information processing under the action of psilocybin in the cat. Neuropsychopharmacology 4: 309–315.Search in Google Scholar

Deshon, H.J., Rinkel, M.D., and Solomon, H.C. (1952). Mental changes experimentally produced by LSD (d-lysergic acid diethylamide tartrate). Psychiatr. Q. 26: 33–53, https://doi.org/10.1007/bf01568448.Search in Google Scholar

Dubansky, B. and Vyhnankova, M. (1966). Visual effects of psilocybin in healthy subjects and in patients with lesions of visual system. Act. Nerv. Super. 8: 166.Search in Google Scholar

Dykstra, L.A. and Appel, J.B. (1970). Effects of LSD on auditory generalization. Psychonomic Sci. 2: 272–274, https://doi.org/10.3758/bf03330711.Search in Google Scholar

Dykstra, L.A. and Appel, J.B. (1972). Lysergic acid diethylamide and stimulus generalization: rate-dependent effects. Science 177: 720–722, https://doi.org/10.1126/science.177.4050.720.Search in Google Scholar

Dykstra, L.A. and Appel, J.B. (1974). Effects of LSD on auditory perception: a signal detection analysis. Psychopharmacologia 34: 289–307, https://doi.org/10.1007/bf00422553.Search in Google Scholar

Eagle, C.T. (1972). Music and LSD: an empirical study. J. Music Ther. 9: 23–38, https://doi.org/10.1093/jmt/9.1.23.Search in Google Scholar

Etevenon, P. and Boissier, J.R. (1972). LSD effects on signal-to-noise ratio and lateralization of visual cortex and lateral geniculate during photic stimulation. Experientia 28: 1338–1340, https://doi.org/10.1007/bf01965332.Search in Google Scholar

Evarts, E.V. (1958). Neurophysiological correlates of pharmacologically-induced behavioral disturbances. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 36: 347–380.Search in Google Scholar

Evarts, E.V. and Hughes, J.R. (1955). Effects of physiological subnormality and LSD on post-tetanic potentiation potentials. Am. J. Physiol. 183: 614.Search in Google Scholar

Evarts, E.V. and Marshall, W.H. (1955). The effects of lysergic acid diethylamide on the excitability cycle of the lateral geniculate. Trans. Am. Neurol. Assoc. 80: 58–60.Search in Google Scholar

Eveloff, H.H. (1968). The LSD syndrome: a review. Calif. Med. 109: 368–372.Search in Google Scholar

Fernández-Guardiola, A., Roldán, E., Fanjul, M.L., and Castells, C. (1961). Role of the pupillary mechanism in the process of habituation of the visual pathways. Electroencephalogr. Clin. Neurophysiol. 13: 564–576, https://doi.org/10.1016/0013-4694(61)90170-5.Search in Google Scholar

Fernberger, S.W. (1923). Observations on taking peyote “(anhalonium lewinii)”. Am. J. Psychol. 34: 267–270, https://doi.org/10.2307/1413578.Search in Google Scholar

Fischer, R. (1969). Psychotomimetic drug-induced changes in space and time. In: Processions 4th International Congress on Pharmacology, Vol. 3, pp. 51–52.Search in Google Scholar

Fischer, R. and Mead, E.L. (1966). Time contraction and psychomotor performance produced by ‘Psilocybin’. Nature 209: 433–434, https://doi.org/10.1038/209433a0.Search in Google Scholar

Fischer, R., England, S.M., Archer, R.C., Dean, R.K. (1966). Psilocybin reactivity and time contraction as measured by psychomotor performance. Arzneimittelforschung 16: 180–185.Search in Google Scholar

Fischer, R., Hill, R., Thatcher, K., and Scheib, J. (1970). Psilocybin-induced contraction of nearby visual space. Agents Actions 1: 190–197, https://doi.org/10.1007/bf01965761.Search in Google Scholar

Fischer, R., Thatcher, K., Kappeler, T., and Wisecup, P. (1969). Perceptual variability: a predictor of psychotomimentic drug-induced behavior. Arzneimittelforschung 19: 1941–1945.Search in Google Scholar

Forrer, G.R. and Goldner, R.D. (1951). Experimental physiological studies with lysergic acid diethylamide (LSD-25). AMA Arch. Neurol. Psychiatry 65: 581–588, https://doi.org/10.1001/archneurpsyc.1951.02320050038004.Search in Google Scholar

Fox, S.S. (1960). LSD alteration of optic potentials (cat lateral geniculate)-block by schizophrenic serum. Fed. Proc. 19: 262.Search in Google Scholar

Frecska, E., Móré, C.E., Vargha, A., and Luna, L.E. (2012). Enhancement of creative expression and entoptic phenomena as after-effects of repeated ayahuasca ceremonies. J. Psychoact. Drugs 44: 191–199, https://doi.org/10.1080/02791072.2012.703099.Search in Google Scholar

Friedman, S.M. and Fischer, C. (1960). Further observations on primary modes of perception: the use of a masking technique for subliminal visual stimulation. J. Am. Psychoanal. Assoc. 8: 100–129, https://doi.org/10.1177/000306516000800105.Search in Google Scholar

George, J.R., Michaels, T.I., Sevelius, J., & Williams, M.T. (2020). The psychedelic renaissance and the limitations of a White-dominant medical framework: a call for indigenous and ethnic minority inclusion. J. Psychedelic Stud. 4: 4–15.10.1556/2054.2019.015Search in Google Scholar

Greiner, T., Burch, N.R., and Edelberg, R. (1958). Psychopathology and psychophysiology of minimal LSD-25 dosage. AMA Arch. Neurol. Psychiatry 79: 208–210, https://doi.org/10.1001/archneurpsyc.1958.02340020088016.Search in Google Scholar

Griffiths, R.R., Johnson, M.W., Carducci, M.A., Umbricht, A., Richards, W.A., Richards, B.D., Cosimano, M.P., and Klinedinst, M.A. (2016). Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J. Psychopharmacol. 30: 1181–1197, https://doi.org/10.1177/0269881116675513.Search in Google Scholar

Grob, C.S., Bossis, A.P., and Griffiths, R.R. (2013). Use of the classic hallucinogen psilocybin for treatment of existential distress associated with cancer. In: Carr, B.I. and Steele, J. (Eds.). Psychological aspects of cancer. Springer, Boston, MA, pp. 291–308.10.1007/978-1-4614-4866-2_17Search in Google Scholar

Guha, D. and Pradhan, S.N. (1974). Effects of mescaline, tetrahydrocannabinal and pentobarbital on the auditory evoked responses in the cat. Neuropharmacology 13: 755–762, https://doi.org/10.1016/0028-3908(74)90022-7.Search in Google Scholar

Guttmann, E. (1936). Artificial psychoses produced by mescaline. J. Ment. Sci. 82: 203–221, https://doi.org/10.1192/bjp.82.338.203.Search in Google Scholar

Halasz, M.F., Formanek, J., and Marrazzi, A.S. (1969). Hallucinogen-tranquilizer interaction: its nature. Am. Assoc. Adv. Sci. 164: 569–571, https://doi.org/10.1126/science.164.3879.569.Search in Google Scholar

Halpern, J.H., Lerner, A.G., and Passie, T. (2016). A review of hallucinogen persisting perception disorder (HPPD) and an exploratory study of subjects claiming symptoms of HPPD. In: Halberstadt, A.L., Vollenweider, F.X., and Nichols, D.E. (Eds.). Behavioral neurobiology of psychedelic drugs. Springer, Berlin, Heidelberg.10.1007/7854_2016_457Search in Google Scholar

Hartman, A.M. and Hollister, L.E. (1962). Effect of mescaline, lysergic acid diethylamide and psilocybin on color perception. Psychopharmacologia 4: 441–451.10.1007/BF00403349Search in Google Scholar PubMed

Hoch, P.H., Cattell, J.P., and Pennes, H.H. (1952). Effects of mescaline and lysergic acid (d-LSD-25). Am. J. Psychiatry 108: 579–584, https://doi.org/10.1176/ajp.108.8.579.Search in Google Scholar

Hollister, L.E. and Hartman, A.M. (1962). Mescaline, lysergic acid diethylamide and psilocybin: comparison of clinical syndromes, effects on color perception and biochemical measures. Compr. Psychiatry 3: 235–241, https://doi.org/10.1016/s0010-440x(62)80024-8.Search in Google Scholar

Horn, G. and McKay, J.M. (1973). Effects of lysergic acid diethylamide on the spontaneous activity and visual receptive fields of cells in the lateral geniculate nucleus of the cat. Exp. Brain Res. 17: 271–284, https://doi.org/10.1007/bf00234666.Search in Google Scholar

Joshi, S., Li, Y., Kalwani, R.M., and Gold, J.I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89: 221–234, https://doi.org/10.1016/j.neuron.2015.11.028.Search in Google Scholar

Kaelen, M., Barrett, F.S., Roseman, L., Lorenz, R., Family, N., Bolstridge, M., Curran, H.V., Feilding, A., Nutt, D.J., and Carhart-Harris, R.L. (2015). LSD enhances the emotional response to music Psychopharmacology 232: 3607–3614, https://doi.org/10.1007/s00213-015-4014-y.Search in Google Scholar

Kaelen, M., Giribaldi, B., Raine, J., Evans, L., Timmerman, C., Rodriguez, N., Roseman, L., Feilding, A., Nutt, D., and Carhart-Harris, R. (2018). The hidden therapist: evidence for a central role of music in psychedelic therapy. Psychopharmacology 235: 505–519.10.1007/s00213-017-4820-5Search in Google Scholar PubMed PubMed Central

Kaelen, M., Roseman, L., Kahan, J., Santos-Ribeiro, A., Orban, C., Lorenz, R., Barrett, F.S., Bolstridge, M., Williams, T., Williams, L., et al.. (2016). LSD modulates music-induced imagery via changes in parahippocampal connectivity. Eur. Neuropsychopharmacol. 26: 1099–1109, https://doi.org/10.1016/j.euroneuro.2016.03.018.Search in Google Scholar

Keeler, M.H. (1970). Klüver’s mechanisms of hallucinations as illustrated by the paintings of Max Ernst. In: Keup, W. (Eds.). Origin and mechanisms of hallucinations. MA Springer, Boston.10.1007/978-1-4615-8645-6_19Search in Google Scholar

Kenna, J.C. and Sedman, G. (1964). The subjective experience of time during lysergic acid diethylamide (LSD-25) intoxication. Psychopharmacologia 5: 280–288, https://doi.org/10.1007/bf02341260.Search in Google Scholar

Key, B.J. (1961). The effect of drugs on discrimination and sensory generalization of auditory stimuli in cats. Psychopharmacologia 2: 352–363, https://doi.org/10.1007/bf00404123.Search in Google Scholar

Key, B.J. (1965). Effect of lysergic acid diethylamide on potentials evoked in the specific sensory pathways. Br. Med. Bull. 21: 30–35, https://doi.org/10.1093/oxfordjournals.bmb.a070352.Search in Google Scholar

Khazan, N. and McCask, D. (1965). Effects of LSD-25, n, n-dimethyltryptamine (DMT), and n, n-diethyltryptamine (DET) on the photic evoked responses in the unanesthetized rabbit. Arch. Int. Pharmacodyn. Ther. 154: 474–483.Search in Google Scholar

Klüver, H. (1928). Mescal: the divine plant and its psychological effects. Kegan Paul, London.Search in Google Scholar

Klüver, H. (1942). Mechanisms of hallucinations. In: Terman and Merrill (Eds.). Studies in personality. McGraw-Hill, New York, NY, pp. 175–207.Search in Google Scholar

Knauer, A. and Maloney, W. (1913). A preliminary note on the psychic action of mescalin, with special reference to the mechanism of visual hallucinations. J. Nerv. Ment. Dis. 40: 425–436, https://doi.org/10.1097/00005053-191307000-00001.Search in Google Scholar

Koella, W.P., Wells, C.H., and Smythies, J.R. (1959). Influence of LSD-25 on optically evoked potentials in the nonanesthetized rabbit. Am. J. Physiol. 196: 1181–1184, https://doi.org/10.1152/ajplegacy.1959.196.6.1181.Search in Google Scholar

Kohn, B. and Bryden, M.P. (1964). The effect of lysergic acid diethylamide (LSD-25) on perception with stabilized images. Psychopharmacologia 7: 311–321.10.1007/BF00403756Search in Google Scholar PubMed

Kometer, M., Cahn, B.R., Andel, D., Carter, O.L., and Vollenweider, F.X. (2011). The 5-HT2A/1A agonist psilocybin disrupts modal object completion associated with visual hallucinations. Biol. Psychiatry 69: 399–406, https://doi.org/10.1016/j.biopsych.2010.10.002.Search in Google Scholar

Kometer, M., Schmidt, A., Jäncke, L., and Vollenweider, F.X. (2013). Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J. Neurosci. 33: 10544–10551, https://doi.org/10.1523/jneurosci.3007-12.2013.Search in Google Scholar

Kometer, M. and Vollenweider, F.X. (2016). Serotonergic hallucinogen-induced visual perceptual alterations. In: Halberstadt, A., Vollenweider, F.X., and Nichols, D.E. (Eds.). Behavioral neurobiology of psychedelic drugs. Springer, Berlin, pp. 257–282.10.1007/7854_2016_461Search in Google Scholar PubMed

Koppanyi, T. (1945). Acetaldehyde, a volatile anesthetic and sympathetic stimulant. Anesthesiology 6: 603–611, https://doi.org/10.1097/00000542-194511000-00008.Search in Google Scholar

Korein, J. and Musaccio, J.M. (1968). LSD and focal cerebral lesions: behavioral and EEG effects in patients with sensory defects. Neurology 18: 147–152, https://doi.org/10.1212/wnl.18.2.147.Search in Google Scholar

Kraehenmann, R. (2017). Dreams and psychedelics: neurophenomenological comparison and therapeutic implications. Curr. Neuropharmacol. 15: 1032–1042, https://doi.org/10.2174/1573413713666170619092629.Search in Google Scholar

Kraehenmann, R., Pokorny, D., Vollenweider, L., Preller, K.H., Pokorny, T., Seifritz, E., and Vollenweider, F.X. (2017). Dreamlike effects of LSD on waking imagery in humans depend on serotonin 2A receptor activation. Psychopharmacology 234: 2031–2046, https://doi.org/10.1007/s00213-017-4610-0.Search in Google Scholar

Krill, A.E., Alpert, H.J., and Ostfeld, A.M. (1963). Effects of a hallucinogenic agent in totally blind subjects. Arch. Ophthalmol. 69: 180–185, https://doi.org/10.1001/archopht.1963.00960040186009.Search in Google Scholar

Krill, A.E., Wiedland, A.M., and Ostfeld, A.M. (1960). The effect of two hallucinogenic agents on human retinal function. Arch. Ophthalmol. 64: 104–113, https://doi.org/10.1001/archopht.1960.01840010726015.Search in Google Scholar

Kuramochi, H. and Takahashi, R. (1964). Psychopathology of LSD intoxication: study of experimental psychosis induces by LSD-25: description of LSD symptoms in normal oriental subjects. Arch. Gen. Psychiatry 11: 151–161, https://doi.org/10.1001/archpsyc.1964.01720260045006.Search in Google Scholar

Lebedev, A.V., Lövdén, M., Rosenthal, G., Feilding, A., Nutt, D.J., and Carhart‐Harris, R.L. (2015). Finding the self by losing the self: neural correlates of ego‐dissolution under psilocybin. Hum. Brain Mapp. 36: 3137–3153, https://doi.org/10.1002/hbm.22833.Search in Google Scholar

Liebert, R.S., Wapner, S., and Werner, H. (1957). Effect of LSD on perception of verticality in normals. AMA Arch. Neurol. Psychiatry 77, 193, https://doi.org/10.1001/archneurpsyc.1957.02330320091012.Search in Google Scholar

Linton, H.B. and Langs, R.J. (1962). Subjective reactions lysergic acid diethylamide (LSD-25): measured by a questionnaire. Arch. Gen. Psychiatry 6: 352–368, https://doi.org/10.1001/archpsyc.1962.01710230020003.Search in Google Scholar

Luck, S.J. (2014). An introduction to the event-related potential technique. MIT Press, Cambridge, MA.Search in Google Scholar

Lumholtz, C. (1902). Unknown Mexico: a record of five year’s exploration among the tribes of the western Sierra Madre; in the tierra caliente of Tepic and Jalisco; and among the Tarascos of Michoacan. Scribners, New York, NY.10.2307/197404Search in Google Scholar

Malitz, S., Esecover, H., Wilkens, B., and Hoch, P.H. (1960). Some observations on psilocybin, a new hallucinogen, in volunteer subjects. Compr. Psychiatry 1: 8–17, https://doi.org/10.1016/s0010-440x(60)80045-4.Search in Google Scholar

Marshall, C.R. (1937). An enquiry into the causes of mescal visions. J. Neurol. Psychopathol. 17: 289–304, https://doi.org/10.1136/jnnp.s1-17.68.289.Search in Google Scholar

Martindale, C. and Fischer, R. (1977). The effects of psilocybin on primary process content in language. Confin. Psychiatry 20: 195–202.Search in Google Scholar

McKay, J.M. and Horn, G. (1971). Effects of LSD on receptive fields of single cells in the lateral geniculate nucleus of the cat. Nature 229: 347–349, https://doi.org/10.1038/229347a0.Search in Google Scholar

Michaels, T.I., Purdon, J., Collins, A., and Williams, M.T. (2018). Inclusion of people of color in psychedelic-assisted psychotherapy: a review of the literature. BMC Psychiatry 18: 245, https://doi.org/10.1186/s12888-018-1824-6.Search in Google Scholar

Mitchell, S.W. (1896). Remarks on the effects of Anhelonium lewinii (the mescal button). Brux. Med. 2: 1625–1629, https://doi.org/10.1136/bmj.2.1875.1625.Search in Google Scholar

Mouriz-Garcia, A., Schmidt, R., and Arlazoroff, A. (1969). Effects on LSD on the spontaneous and evoked activity of retinal and geniculate ganglion cells. Psychopharmacologia 15: 362–391, https://doi.org/10.1007/bf00403713.Search in Google Scholar

Muthukumaraswamy, S.D., Carhart-Harris, R.L., Moran, R.J., Brookes, M.J., Williams, T.M., Errtizoe, D., Sessa, B., Papadopoulos, A., Bolstridge, M., Singh, K.D., et al.. (2013). Broadband cortical desynchronization underlies the human psychedelic state. J. Neurosci. 33: 15171–15183. https://doi.org/10.1523/jneurosci.2063-13.2013.Search in Google Scholar

Nguyen, V.H., Palmer, S.B., Aday, J.S., Bloesch, E.K., and Davoli, C.C. (2020). Meditation alters representations of peripersonal space: evidence from auditory evoked potentials. Conscious. Cognit. 83: 1–7, https://doi.org/10.1016/j.concog.2020.102978.Search in Google Scholar

Oster, G. (1966). Moiré patterns and visual hallucinations. Psychedelic Rev. 7: 33–40.Search in Google Scholar

Ostfeld, A.M. (1961). Effects of LSD 25 and JB 318 on test of visual and perceptual functions in man. Fed. Proc. 20: 876–883.Search in Google Scholar

Pahnke, W.N., Kurland, A.A., Unger, S., Savage, C., and Grof, S. (1970). The experimental use of psychedelic (LSD) psychotherapy. J. Am. Med. Assoc. 212: 1856–1863, https://doi.org/10.1001/jama.212.11.1856.Search in Google Scholar

Prentiss, D.W. and Morgan, F.P. (1895). Anhalonium lewinii (mescal buttons): a study of the drug, with especial reference to its physiological action upon man, with report of experiments. Therap. Gazette 11: 577–585.Search in Google Scholar

Richards, W.A. (2015). Sacred knowledge: psychedelics and religious experiences. Columbia University Press, New York, NY.10.7312/columbia/9780231174060.001.0001Search in Google Scholar

Rinkel, M. (1958). The psychological aspects of the LSD psychosis. In: Rinkel, M. and Denber, H.C.B. (Eds.). Chemical concepts of psychosis. McDowell Obelensky, New York, NY, pp. 75–84.10.1037/11190-005Search in Google Scholar

Roseman, L., Haijen, E., Idialu-Ikato, K., Kaelen, M., Watts, R., and Carhart-Harris, R. (2019). Emotional breakthrough and psychedelics: validation of the emotional breakthrough inventory. J. Psychopharmacology 33: 1076–1087, https://doi.org/10.1177/0269881119855974.Search in Google Scholar

Roseman, L., Nutt, D.J., and Carhart-Harris, R.L. (2018). Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Front. Pharmacol. 8, https://doi.org/10.3389/fphar.2017.00974.Search in Google Scholar

Schwartz, A.S. and Cheney, C. (1965). Effect of LSD on the tonic activity of the visual pathways of the cat. Life Sci. 4: 771–778, https://doi.org/10.1016/0024-3205(65)90309-7.Search in Google Scholar

Shirahashi, K. (1960). Electroencephalographic study of mental disturbances experimentally induced by LSD-25. Folia Psychiatr. Neurol. Jpn. 14: 140–155, https://doi.org/10.1111/j.1440-1819.1960.tb02237.x.Search in Google Scholar

Siegel, R.K. (1969). Effects of cannabis sativa and lysergic acid diethylamide on a visual discrimination task in pigeons. Psychopharmacologia 15: 1–8, https://doi.org/10.1007/bf00410795.Search in Google Scholar

Silverstein, A.B. and Klee, G.D. (1958). A psychopharmacological test of the “body image” hypothesis. J. Nerv. Ment. Dis. 127: 323–329, https://doi.org/10.1097/00005053-195810000-00003.Search in Google Scholar

Snyder, S.H. and Reivich, M. 1966. Regional localization of lysergic acid diethylamide in monkey brain. Nature 209: 1093–1095, https://doi.org/10.1038/2091093a0.Search in Google Scholar

Stockings, G.T. (1940). A clinical study of the mescaline psychosis, with special reference to the mechanism of the genesis of schizophrenic and other psychotic states. J. Ment. Sci. 86: 29–47, https://doi.org/10.1192/bjp.86.360.29.Search in Google Scholar

Strassman, R.J. (1996). Human psychopharmacology of N, N-dimethyltryptamine. Behav. Brain Res. 73: 121–124, https://doi.org/10.1016/0166-4328(96)00081-2.Search in Google Scholar

Strassman, R.J., Qualls, C.R., Uhlenhuth, E.H., and Kellner, R. (1994). Dose-response study of N, N-dimethyltryptamine in humans: II. Subjective effects and preliminary results of a new rating scale. Arch. Gen. Psychiatry 51: 98–108, https://doi.org/10.1001/archpsyc.1994.03950020022002.Search in Google Scholar

Szara, S. (1957). The comparison of the psychotic effect of tryptamine derivatives with the effects of mescaline and LSD-25 in self-experiments. In: Garattini, S. and Ghetti, V. (Eds.). Psychotropic drugs. Elsevier Science Publishing Co Inc., New York, NY, pp. 460–467.Search in Google Scholar

Terhune, D.B., Luke, D.P., Kaelen, M., Bolstridge, M., Feilding, A., Nutt, D., Carhart-Harris, R., and Ward, J. (2016). A placebo-controlled investigation of synaesthesia-like experiences under LSD. Neuropsychologia 88: 28–34, https://doi.org/10.1016/j.neuropsychologia.2016.04.005.Search in Google Scholar

Timmermann, C., Roseman, L., Schartner, M., Milliere, R., Williams, L.T., Erritzoe, D., Muthukumaraswamy, S., Ashton, M., Bendrioua, A., Kaur, O., et al.. (2019). Neural correlates of the DMT experience assessed with multivariate EEG. Sci. Rep. 9: 1–13, https://doi.org/10.1038/s41598-019-51974-4.Search in Google Scholar

Valle, M., Maqueda, A.E., Rabella, M., Rodríguez-Pujadas, A., Antonijoan, R.M., Romero, S., Alonso, J.F., Mañanas, M.À., Barker, S., Friedlander, P., et al.. (2016). Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans. Eur. Neuropsychopharmacol. 26: 1161–1175, https://doi.org/10.1016/j.euroneuro.2016.03.012.Search in Google Scholar

Walter, W.G., Cooper, R., Aldridge, V.J., McCallum, W.C., and Winter, A.L. (1964). Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 203: 380–384, https://doi.org/10.1038/203380a0.Search in Google Scholar

Wapner, S. and Krus, D.M. (1959). Behavioral effects of lysergic acid diethylamide (LSD-25). AMA Arch Gen Psychiatry 1: 87–89, https://doi.org/10.1001/archpsyc.1959.03590040087008.Search in Google Scholar

Wasson, R.G., (1957). Seeking the magic mushroom. Life 42: 100–120.Search in Google Scholar

Wittmann, M., Carter, O., Hasler, F., Cahn, B.R., Grimberg, U., Spring, P., Hell, D., Flohr, H., and Vollenweider, F.X. (2007). Effects of psilocybin on time perception and temporal control of behaviour in humans. J. Psychopharmacol. 21: 50–64, https://doi.org/10.1177/0269881106065859.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/revneuro-2020-0094).


Received: 2020-08-28
Accepted: 2020-12-04
Published Online: 2021-02-08
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2020-0094/html
Scroll to top button