Skip to main content
Log in

Loss of ADAMTS15 Promotes Browning in 3T3-L1 White Adipocytes via Activation of β3-adrenergic Receptor

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

ADAMTSs belong to the superfamily of secreted metalloendopeptidases, some of which are reported to be closely associated with obesity. However, the role of ADAMTS15 is not well characterized in adipocytes. This study investigates the effect of Adamts15 deficiency on lipid metabolism in 3T3-L1 and HIB1B adipocytes, with a focus on the role of browning of white adipocytes. Quantitative real-time PCR, immunoblot analysis, immunofluorescence, and staining methods were applied to evaluate the effects of ADAMTS15 on other target proteins and genes involved in lipid metabolism, after silencing Adamts15 by applying the siRNA technique. Our results demonstrate that ADAMTS15 is expressed in both white and brown adipocytes, and the deficiency of Adamts15 promotes browning of white adipocytes by enhancing the expression of brown adipocyte-specific genes and proteins. In addition, silencing of Adamts15 activates brown adipocytes and also upregulates lipid metabolic activity in both white and brown adipocytes, by increasing mitochondrial biogenesis as well as the levels of lipolytic and fat oxidative marker proteins, and reducing adipogenic factors. Moreover, mechanistic studies revealed that depletion of Adamts15 induces browning via activation of the β3AR-PKA-CREB signaling pathway. Taken together, our data unveiled a previously unknown mechanism of ADAMTS15 in the regulation of lipids, and the significance of this protein as a pharmacotherapeutic target to treat obesity-related metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACC :

acyl-CoA carboxylase

ACO :

acyl-coenzyme A oxidase 1

ADAMTS/Adamts :

a disintegrin and metallo-proteinase with thrombospondin motifs/encoding gene

AMPK :

AMP-activated protein kinase

AR :

adrenergic receptor

ATF :

activating transcription factor

ATGL :

adipose triglyceride lipase

Cd137 :

tumor necrosis factor receptor superfamily, member 9

Cited1 :

gene encoding Cbp/p300-interacting transactivator 1

C/EBP/Cebp :

CCAAT/enhancer-binding protein/encoding gene

CREB :

cyclic AMP response element-binding protein

CPT1 :

carnitine palmitoyl transferase 1

ERK :

extracellular-signal-regulated kinase

HSL :

hormone-sensitive lipase

FGF21 :

fibroblast growth factor 21

mTORC1 :

mammalian target of rapamycin complex 1

PDE4 :

phosphodiesterase 4

PGC-1α /Ppargc1α :

peroxisome proliferator-activated receptor gamma co-activator 1-alpha/encoding gene

Nrf1 :

nuclear respiratory factor 1-encoding gene

PKA :

protein kinase A

PPAR :

peroxisome proliferator-activated receptor

PRDM16/Prdm16 :

PR domain-containing 16/encoding gene

p38 MAPK :

mitogen-activated protein kinase 14

Tbx1 :

gene encoding T-box protein 1

Tfam :

gene encoding mitochondrial transcription factor

Tmem26 :

gene encoding transmembrane protein 26

UCP1/Ucp1 :

uncoupling protein 1/encoding gene

VEGF :

vascular endothelial growth factor

References

  1. Nicol, K. K., B. J. Shelton, M. A. Knovich, and J. Owen (2003) Overweight individuals are at increased risk for thrombotic thrombocytopenic purpura. Am. J. Hematol. 74: 170–174.

    Article  PubMed  Google Scholar 

  2. Deford, C. C., J. A. Reese, L. H. Schwartz, J. J. Perdue, J. A. Kremer Hovinga, B. Lammle, D. R. Terrell, S. K. Vesely, and J. N. George (2013) Multiple major morbidities and increased mortality during long-term follow-up after recovery from thrombotic thrombocytopenic purpura. Blood. 122: 2023–2029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Geys, L., I. Scroyen, E. Roose, K. Vanhoorelbeke, and H. R. Lijnen (2015) ADAMTS13 deficiency in mice does not affect adipose tissue development. Biochim. Biophys. Acta. 1850: 1368–1374.

    Article  CAS  PubMed  Google Scholar 

  4. Rocks, N., G. Paulissen, M. El Hour, F. Quesada, C. Crahay, M. Gueders, J. M. Foidart, A. Noel, and D. Cataldo (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 90: 369–379.

    Article  CAS  PubMed  Google Scholar 

  5. Kong, P., C. Gonzalez-Quesada, N. Li, M. Cavalera, D. W. Lee, and N. G. Frangogiannis (2013) Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation. Am. J. Physiol. Endocrinol. Metab. 305: E439–E450.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Porter, S., I. M. Clark, L. Kevorkian, and D. R. Edwards (2005) The ADAMTS metalloproteinases. Biochem. J. 386: 15–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mead, T. J. and S. S. Apte (2018) ADAMTS proteins in human disorders. Matrix Biol. 71–72: 225–239.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Christiaens, V., I. Scroyen, and H. R. Lijnen (2008) Role of proteolysis in development of murine adipose tissue. Thromb. Haemost. 99: 290–294.

    Article  CAS  PubMed  Google Scholar 

  9. Sun, K., C. M. Kusminski, and P. E. Scherer (2011) Adipose tissue remodeling and obesity. J. Clin. Invest. 121: 2094–2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dubail, J. and S. S. Apte (2015) Insights on ADAMTS proteases and ADAMTS-like proteins from mammalian genetics. Matrix Biol. 44–46: 24–37.

    Article  PubMed  Google Scholar 

  11. Kelwick, R., I. Desanlis, G. N. Wheeler, and D. R. Edwards (2015) The ADAMTS (A disintegrin and metalloproteinase with thrombospondin motifs) family. Genome Biol. 16: 113.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mariman, E. C. M. and P. Wang (2010) Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol. Life Sci. 67: 1277–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonnans, C., J. Chou, and Z. Werb (2014) Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15: 786–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Voros, G., J. D. Sandy, D. Collen, and H. R. Lijnen (2006) Expression of aggrecan(ases) during murine preadipocyte differentiation and adipose tissue development. Biochim. Biophys. Acta. 1760: 1837–1844.

    Article  CAS  PubMed  Google Scholar 

  15. Crawley, J. T. B., D. A. Lane, M. Woodward, A. Rumley, and G. D. O. Lowe (2008) Evidence that high von Willebrand factor and low ADAMTS-13 levels independently increase the risk of a non-fatal heart attack. J. Thromb. Haemost. 6: 583–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, M. Y., Z. Zhou, R. Ma, Z. Tao, H. Choi, A. L. Bergeron, H. Wu, and J. Dong (2012) Gender-dependent up-regulation of ADAMTS-13 in mice with obesity and hypercholesterolemia. Thromb. Res. 129: 536–539.

    Article  CAS  PubMed  Google Scholar 

  17. Pan, R., X. Zhu, P. Maretich, and Y. Chen (2020) Combating obesity with thermogenic fat: current challenges and advancements. Front. Endocrinol (Lausanne). 11: 185.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jeremic, N., P. Chaturvedi, S. C. Tyagi (2017) Browning of white fat: novel insight into factors, mechanisms, and therapeutics. J. Cell Physiol. 232: 61–68.

    Article  CAS  PubMed  Google Scholar 

  19. Manigandan, S. and J. W. Yun (2020) Urolithin A induces brown-like phenotype in 3T3-L1 white adipocytes via β3-adrenergic receptor-p38 MAPK signaling pathway. Biotechnol. Bioprocess Eng. 25: 345–355.

    Article  CAS  Google Scholar 

  20. Mukherjee, S., K. R. Aseer, and J. W. Yun (2020) Roles of macrophage colony stimulating factor in white and brown adipocytes. Biotechnol. Bioprocess Eng. 25: 29–38.

    Article  CAS  Google Scholar 

  21. Bauters, D., M. Cobbaut, L. Geys, J. V. Lint, B. Hemmeryckx, and H. R. Lijnen (2017) Loss of ADAMTS5 enhances brown adipose tissue mass and promotes browning of white adipose tissue via CREB signaling. Mol. Metab. 6: 715–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bauters, D., P. Bedossa, H. R. Lijnen, and B. Hemmeryckx (2018) Functional role of ADAMTS5 in adiposity and metabolic health. PLoS One. 13: e0190595.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kurisaki, T., A. Masuda, K. Sudo, J. Sakagami, S. Higashiyama, Y. Matsuda, A. Nagabukuro, A. Tsuji, Y. Nabeshima, M. Asano, Y. Iwakura, and A. Sehara-Fujisawa (2003) Phenotypic analysis of meltrin a (ADAM12)-deficient mice: involvement of meltrin a in adipogenesis and myogenesis. Mol. Cell Biol. 23: 55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Porter, S., P. N. Span, F. C. G. J. Sweep, V. C. G. Tjan-Heijnen, C. J. Pennington, T. X. Pedersen, M. Johnsen, L. R. Lund, J. Rømer, and D. R. Edwards (2006) ADAMTS8 and ADAMTS15 expression predicts survival in human breast carcinoma. Int. J. Cancer. 118: 1241–1247.

    Article  CAS  PubMed  Google Scholar 

  25. Binder, M. J., S. McCoombe, E. D. Williams, D. R. McCulloch, and A. C. Ward (2020) ADAMTS-15 has a tumor suppressor role in prostate cancer. Biomolecules. 10: 682.

    Article  CAS  PubMed Central  Google Scholar 

  26. Dimauro, I., T. Pearson, D. Caporossi, and M. J. Jackson (2012) A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue. BMC Res. Notes 5: 513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bauters, D., P. SpI.incemaille, L. Geys, D. Cassiman, P. Vermeersch, P. Bedossa, I. Scroyen, and H. R. Lijnen (2016) ADAMTS5 deficiency protects against non-alcoholic steatohepatitis in obesity. Liver Int. 36: 1848–1859.

    Article  CAS  PubMed  Google Scholar 

  28. Bauters, D., I. Scroyen, R. Deprez-Poulain, and H. R. Lijnen (2016) ADAMTS5 promotes murine adipogenesis and visceral adipose tissue expansion. Thromb. Haemost. 116: 694–704.

    Article  PubMed  Google Scholar 

  29. Gelling, R. W., W. Yan, S. Al-Noori, A. Pardini, G. J. Morton, K. Ogimoto, M. W. Schwartz, and P. J. Dempsey (2008) Deficiency of TNFa converting enzyme (TACE/ADAM17) causes a lean, hypermetabolic phenotype in mice. Endocrinology. 149: 6053–6064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Voros, G., E. Maquoi, D. Collen, and H. R. Lijnen (2003) Differential expression of plasminogen activator inhibitor-1, tumor necrosis factor-alpha, TNF-alpha converting enzyme and ADAMTS family members in murine fat territories. Biochim. Biophys. Acta. 1625: 36–42.

    Article  CAS  PubMed  Google Scholar 

  31. Vázquez, F., G. Hastings, M. A. Ortega, T. F. Lane, S. Oikemus, M. Lombardo, and M. L. Iruela-Arispe (1999) METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J. Biol. Chem. 274: 23349–23357.

    Article  PubMed  Google Scholar 

  32. Luque, A., D. R. Carpizo, and M. L. Iruela-Arispe (2003) ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J. Biol. Chem. 278: 23656–23665.

    Article  CAS  PubMed  Google Scholar 

  33. Chen, S. Z., L. F. Ning, X. Xu, W. Y. Jiang, C. Xing, W. P. Jia, X. L. Chen, Q. Q. Tang, and H. Y. Huang (2016) The miR-181d-regulated metalloproteinase Adamts1 enzymatically impairs adipogenesis via ECM remodeling. Cell Death Differ. 23: 1778–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar, S., S. Sharghi-Namini, N. Rao, and R. Ge (2012) ADAMTS5 functions as an anti-angiogenic and anti-tumorigenic protein independent of its proteoglycanase activity. Am. J. Pathol. 181: 1056–1068.

    Article  CAS  PubMed  Google Scholar 

  35. Lee, M. H., A. G. Goralczyk, R. Kriszt, X. M. Ang, C. Badowski, Y. Li, S. A. Summers, S. A. Toh, M. S. Yasin, A. Shabbir, A. Sheppard, and M. Raghunath (2016) ECM microenvironment unlocks brown adipogenic potential of adult human bone marrow-derived MSCs. Sci. Rep. 6: 21173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruiz-Ojeda, F. J., J. Wang, T. Bäcker, M. Krueger, S. Zamani, S. Rosowski, T. Gruber, Y. Onogi, A. Feuchtinger, T. J. Schulz, R. Fässler, T. D. Müller, C. García-Cáceres, M. Meier, M. Blüher, and S. Ussar (2021) Active integrins regulate white adipose tissue insulin sensitivity and brown fat thermogenesis. Mol. Metab. 45: 101147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crawford, S. E., V. Stellmach, J. E. Murphy-Ullrich, S. M. Ribeiro, J. Lawler, R. O. Hynes, G. P. Boivin, and N. Bouck (1998) Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell. 93: 1159–1170.

    Article  CAS  PubMed  Google Scholar 

  38. Guilherme, A. and M. P. Czech (1998) Stimulation of IRS-1-associated phosphatidylinositol 3-kinase and Akt/protein kinase B but not glucose transport by beta1-integrin signaling in rat adipocytes. J. Biol. Chem. 273: 33119–33122.

    Article  CAS  PubMed  Google Scholar 

  39. Ueno, T. and K. Fujimori (2011) Novel suppression mechanism operating in early phase of adipogenesis by positive feedback loop for enhancement of cyclooxygenase-2 expression through prostaglandin F receptor mediated activation of MEK/ERK-CREB cascade. FEBS J. 278: 2901–2912.

    Article  CAS  PubMed  Google Scholar 

  40. Kim, H. B., W. H. Kim, K. L. Han, J. H. Park, J. Lee, J. Yeo, and M. H. Jung (2010) cAMP-response element binding protein (CREB) positively regulates mouse adiponectin gene expression in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 391: 634–639.

    Article  CAS  PubMed  Google Scholar 

  41. Shi, F. and S. Collins (2017) Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective. Horm. Mol. Biol. Clin. Investig. 31: 20170062.

    CAS  Google Scholar 

Download references

Acknowldgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C2002163).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, M.J., Mukherjee, S. & Yun, J.W. Loss of ADAMTS15 Promotes Browning in 3T3-L1 White Adipocytes via Activation of β3-adrenergic Receptor. Biotechnol Bioproc E 26, 188–200 (2021). https://doi.org/10.1007/s12257-021-0036-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0036-y

Keywords

Navigation