Skip to main content
Log in

Whole Cell Biotransformation of 1-dodecanol by Escherichia coli by Soluble Expression of ADH Enzyme from Yarrowia lipolytica

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, alcohol dehydrogenases (ADH) enzymes from Yarrowia lipolytica were investigated for the cloning, soluble expression, and biotransformation of 1-dodecanol to 1-dodecanal, which reaction was thermodynamically unfavorable. Sole expression of ADHs in Escherichia coli did not produce soluble form of cytosolic protein, in spite of the effort to solubilize ADH protein by optimizing IPTG concentration, temperature, and auto-induction medium. Eventually, the active form of soluble ADH proteins was successfully obtained through the co-expression of ADH with chaperone protein in pG-KJE8 vector. After analyzing the individual sets of optimization, it was determined that pET-28a(+)::adh coexpression with the pG-KJE8 molecular chaperone in LB medium with 0.1 mM IPTG, 4 mg/mL arabinose, and 2 ng/mL tetracycline achieved optimum expressions against all of the five ADH proteins. Finally, the whole cell biotransformation activity of ADH2 was determined in 1-dodecanol oxidation to 1-dodecanal, followed by further oxidation to 1-dodecanoic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koesoema, A. A., D. M. Standley, T. Senda, and T. Matsuda (2020) Impact and relevance of alcohol dehydrogenase enantioselectivities on biotechnological applications. Appl. Microbiol. Biotechnol. 104: 2897–2909.

    Article  CAS  Google Scholar 

  2. Dahlin, J., C. Holkenbrink, E. R. Marella, G. Wang, U. Liebal, C. Lieven, D. Weber, D. McCloskey, B. E. Ebert, M. J. Herrgard, L. M. Blank, I. Borodina, and H. L. Wang (2019) Multi-omics analysis of fatty alcohol production in engineered yeasts Saccharomyces cerevisiae and Yarrowia lipolytica. Front. Genet. 10: 747.

    Article  CAS  Google Scholar 

  3. Gutheil, W. G., B. Holmquist, and B. L. Vallee (1992) Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry. 31: 475–481.

    Article  CAS  Google Scholar 

  4. Danielsson, O. and H. Jornvall (1992) “Enzymogenesis”: classical liver alcohol dehydrogenase origin from the glutathione-dependent formaldehyde dehydrogenase line. Proc. Natl. Acad. Sci. USA. 89: 9247–9251.

    Article  CAS  Google Scholar 

  5. Chang, Y. K., J. P. Chen, J. R. Sheu, P. J. Chen, C. H. Su, and S. Y. Chou (2006) Direct recovery of alcohol dehydrogenase from unclarified yeast cell homogenate by IDEBAC using an improved scheme for elution. Biochem. Eng J. 30: 1–10.

    Article  CAS  Google Scholar 

  6. Kasprzak, K., F. Bischoff, M. Rauter, K. Becker, K. Baronian, R. Bode, F. Schauer, H. M. Vorbrodt, and G. Kunze (2016) Synthesis of 1-(S)-phenylethanol and ethyl (R)-4-chloro-3-hydroxybutanoate using recombinant Rhodococcus erythropolis alcohol dehydrogenase produced by two yeast species. Biochem. Eng. J. 106: 107–117.

    Article  CAS  Google Scholar 

  7. Lee, J. S., W. J. Chi, S. K. Hong, J. W. Yang, and Y. K. Chang (2013) Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans. Appl. Microbiol. Biotechnol. 97: 6089–6097.

    Article  CAS  Google Scholar 

  8. Jones, I. G., V. Fairhurst, and H. M. Sealy-Lewis (2001) ADHII in Aspergillus nidulans is induced by carbon starvation stress. Fungal Genet Biol. 32: 33–43.

    Article  Google Scholar 

  9. Ciriacy, M. (1976) Cis-dominant regulatory mutations affecting the formation of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae. Mol Gen Genet. 145: 327–333.

    Article  CAS  Google Scholar 

  10. Choi, K. Y., D. G. Wernick, C. A. Tat, and J. C. Liao (2014) Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab. Eng. 23: 53–61.

    Article  CAS  Google Scholar 

  11. Park, H. A. and K. Y. Choi (2020) α, ω-Oxyfunctionalization of C12 alkanes via whole-cell biocatalysis of CYP153A from Marinobacter aquaeolei and a new CYP from Nocardia farcinica IFM10152. Biochem. Eng. J. 156: 107524.

    Article  CAS  Google Scholar 

  12. Yoo, H. W., J. Kim, M. D. Patil, B. G. Park, S. Y. Joo, H. Yun, and B. G. Kim (2019) Production of 12-hydroxy dodecanoic acid methyl ester using a signal peptide sequence-optimized transporter AlkL and a novel monooxygenase. Bioresour. Technol. 291: 121812.

    Article  CAS  Google Scholar 

  13. Ahsan, M. M., H. Jeon, S. P. Nadarajan, T. Chung, H. W. Yoo, B. G. Kim, M. D. Patil, and H. Yun (2018) Biosynthesis of the Nylon 12 monomer, omega-aminododecanoic acid with novel CYP153A, AlkJ, and omega-TA enzymes. Biotechnol. J. 13: e1700562.

    Article  Google Scholar 

  14. Xu, P., K. Qiao, W. S. Ahn, and G. Stephanopoulos (2016) Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc. Natl. Acad. Sci. USA. 113: 10848–10853.

    Article  CAS  Google Scholar 

  15. Lee, H., Y. E. C. Sugiharto, S. Lee, G. Park, C. Han, H. Jang, W. Jeon, H. Park, J. Ahn, K. Kang, and H. Lee (2017) Characterization of the newly isolated omega-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production. Appl. Microbiol. Biotechnol. 101: 6333–6342.

    Article  CAS  Google Scholar 

  16. Han, C., H. Kwon, G. Park, M. Jang, H. J. Lee, S. Seo, M. Kwon, W. Jeon, H. Lee, H. Lee, and J. Ahn (2020) Enhanced mating-type switching and sexual hybridization in heterothallic yeast Yarrowia lipolytica. FEMS Yeast Res. 20: foaa011.

    Article  CAS  Google Scholar 

  17. Iwama, R., S. Kobayashi, C. Ishimaru, A. Ohta, H. Horiuchi, and R. Fukuda (2016) Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica. Fungal Genet Biol. 91: 43–54.

    Article  CAS  Google Scholar 

  18. Lee, H., C. Han, H. W. Lee, G. Park, W. Jeon, J. Ahn, and H. Lee (2018) Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources. Biotechnol. Biofuels. 11: 310.

    Article  CAS  Google Scholar 

  19. Park, H., I. Yang, M. Choi, K. S. Jang, J. C. Jung, and K. Y. Choi (2020) Engineering of melanin biopolymer by co-expression of MelC tyrosinase with CYP102G4 monooxygenase: Structural composition understanding by 15 tesla FT-ICR MS analysis. Biochem. Eng. J. 157: 107530.

    Article  CAS  Google Scholar 

  20. Iwama, R., S. Kobayashi, A. Ohta, H. Horiuchi, and R. Fukuda (2015) Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica. FEMS Yeast Res. 15: fov014.

    Article  Google Scholar 

  21. de Smidt, O., J. C. du Preez, and J. Albertyn (2008) The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res. 8: 967–978.

    Article  CAS  Google Scholar 

  22. Kusano, M., Y. Sakai, N. Kato, H. Yoshimoto, H. Sone, and Y. Tamai (1998) Hemiacetal dehydrogenation activity of alcohol dehydrogenases in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 62: 1956–1961.

    Article  CAS  Google Scholar 

  23. Wales, M. R. and C. A. Fewson (1994) NADP-dependent alcohol dehydrogenases in bacteria and yeast: purification and partial characterization of the enzymes from Acinetobacter calcoaceticus and Saccharomyces cerevisiae. Microbiology (Reading). 140: 173–183.

    Article  CAS  Google Scholar 

  24. Johnson, J., Y. H. Yang, D. G. Lee, J. J. Yoon, and K. Y. Choi (2018) Expression, purification and characterization of halophilic protease Pph_Pro1 cloned from Pseudoalteromonas phenolica. Protein Expr. Purif. 152: 46–55.

    Article  CAS  Google Scholar 

  25. Sudheer, P. D. V. N., J. Yun, S. Chauhan, T. J. Kang, and K. Y. Choi (2017) Screening, expression, and characterization of Baeyer-Villiger monooxygenases for the production of 9-(nonanoyloxy)nonanoic acid from oleic acid. Biotechnol. Bioprocess Eng. 22: 717–724.

    Article  CAS  Google Scholar 

  26. Sudheer, P. D. V. N., D. Seo, E. J. Kim, S. Chauhan, J. R. Chunawala, and K. Y. Choi (2018) Production of (z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL. Enzyme Microb. Technol. 119: 45–51.

    Article  CAS  Google Scholar 

  27. Nguyen, G. T., Y. G. Kim, J. W. Ahn, and J. H. Chang (2020) Structural basis for broad substrate selectivity of alcohol dehydrogenase YjgB from Escherichia coli. Molecules. 25: 2404.

    Article  CAS  Google Scholar 

  28. Liu, H. L., Y. Ho, and C. M. Hsu (2003) The effect of metal ions on the binding of ethanol to human alcohol dehydrogenase beta2beta2. J. Biomed. Sci. 10: 302–312.

    CAS  PubMed  Google Scholar 

  29. De Bolle, X., C. Vinals, J. Fastrez, and E. Feytmans (1997) Bivalent cations stabilize yeast alcohol dehydrogenase I. Biochem. J. 323: 409–413.

    Article  CAS  Google Scholar 

Download references

Acknowldgements

This work was supported by the Industrial Strategic Technology Development program (No. 20002734).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Young Choi.

Additional information

Ethical Statements

The authors declare no conflict of interest. Neither ethical approval nor informed consent was required for this study.

Authorship Contribution Statements

Ji-Hwan Jang: Validation, Visualization, Writing - review & editing.

Kwon-Young Choi: Writing - original draft, Writing - review & editing.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, JH., Choi, KY. Whole Cell Biotransformation of 1-dodecanol by Escherichia coli by Soluble Expression of ADH Enzyme from Yarrowia lipolytica. Biotechnol Bioproc E 26, 247–255 (2021). https://doi.org/10.1007/s12257-020-0176-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0176-5

Keywords

Navigation