Skip to main content
Log in

Enhancement of Butanol Production in a Newly Selected Strain through Accelerating Phase Shift by Different Phases C/N Ratio Regulation from Puerariae Slag Hydrolysate

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

To obtain native strains to efficiently use puerariae slag (PS) hydrolysate and resistant butanol toxicity, a self-designed isolation method was adopted. With this effort, the strain YBS3 was obtained. Based on 16S rDNA comparison, the strain YBS3 was identified as Clostridium beijerinckii. The feasibility of using PS hydrolysate as substrate to produce butanol was evaluated. A significant phase shift delay was encountered in acetone-butanol-ethanol (ABE) fermentation process, and then leaded to low production and productivity of butanol. However, when the C/N ratio regulation strategy was performed at mid-logarithmic phase, the problem of the phase shift delay was smoothly solved and the yield and productivity of butanol was improved. Specifically, the final production and productivity of butanol were 9.75 ± 0.14 g/L and 0.18 g/(L·h), respectively, which was 46.40% and 125.00% higher than without C/N ratio regulation. This study confirms that the accelerating phase shift is a convenient but effective approach, thereby is a promising technology for improving ABE fermentation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolesinska, B., J. Fraczyk, M. Binczarski, M. Modelska, J. Berlowska, P. Dziugan, H. Antolak, Z. J. Kaminski, I. A. Witonska, and D. Kregiel (2019) Butanol synthesis routes for biofuel production: trends and perspectives. Materials. 12: 350.

    Article  CAS  PubMed Central  Google Scholar 

  2. Moon, Y. H., K. J. Han, D. Kim, and D. F. Day (2015) Enhanced production of butanol and isopropanol from sugarcane molasses using Clostridium beijerinckii optinoii. Biotechnol. Bioprocess Eng. 20: 871–877.

    Article  CAS  Google Scholar 

  3. Chen, Y., T. Zhou, D. Liu, A. Li, S. Xu, Q. Liu, B. Li, and H. Ying (2013) Production of butanol from glucose and xylose with immobilized cells of Clostridium acetobutylicum. Biotechnol. Bioprocess Eng. 18: 234–241.

    Article  CAS  Google Scholar 

  4. Nguyen, T. H., I. Y. Sunwoo, C. H. Ra, G. T. Jeong, and S. K. Kim (2019) Acetone, butanol, and ethanol production from the green seaweed Enteromorpha intestinalis via the separate hydrolysis and fermentation. Bioprocess Biosyst. Eng. 42: 415–424.

    Article  CAS  PubMed  Google Scholar 

  5. Li, H. G., F. K. Ofosu, K. T. Li, Q. Y. Gu, Q. Wang, and X. B. Yu (2014) Acetone, butanol, and ethanol production from gelatinized cassava flour by a new isolates with high butanol tolerance. Bioresour. Technol. 172: 276–282.

    Article  CAS  PubMed  Google Scholar 

  6. Lin, Y. L. and H. P. Blaschek (1983) Butanol Production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl. Environ. Microbiol. 45: 966–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu, H., X. P. Chen, G. P. Liu, M. Jiang, T. Guo, W. Q. Jin, P. Wei, and D. W. Zhu (2012) Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane. Bioprocess Biosyst. Eng. 35: 1057–1065.

    Article  CAS  PubMed  Google Scholar 

  8. Linggang, S., L. Y. Phang, H. Wasoh, and S. Abd-Aziz (2013) Acetone-butanol-ethanol production by Clostridium acetobutylicum ATCC 824 using sago pith residues hydrolysate. Bioenerg. Res. 6: 321–328.

    Article  CAS  Google Scholar 

  9. Khedkar, M. A., P. R. Nimbalkar, P. V. Chavan, Y. J. Chendake, and S. B. Bankar (2017) Cauliflower waste utilization for sustainable biobutanol production: revelation of drying kinetics and bioprocess development. Bioprocess Biosyst. Eng. 40: 1493–1506.

    Article  CAS  PubMed  Google Scholar 

  10. Abo, B. O., M. Gao, Y. Wang, C. Wu, Q. Wang, and H. Ma (2019) Production of butanol from biomass: recent advances and future prospects. Environ. Sci. Pollut. Res. 26: 20164–20182.

    Article  CAS  Google Scholar 

  11. Choi, J., Y. S. Jang, J. H. Cho, D. Seung, S. Y. Lee, E. T. Papoutsakis, G. N. Bennett, and H. Song (2013) Characterization and evaluation of corn steep liquid in acetone-butanol-ethanol production by Clostridium acetobutylicum. Biotechnol. Bioprocess Eng. 18: 266–271.

    Article  CAS  Google Scholar 

  12. Farmanbordar, S., K. Karimi, and H. Amiri (2018) Municipal solid waste as a suitable substrate for butanol production as an advanced biofuel. Energy Convers. Manag. 157: 396–408.

    Article  CAS  Google Scholar 

  13. Sawisit, A., S. Jampatesh, S. S. Jantama, and K. Jantama (2018) Optimization of sodium hydroxide pretreatment and enzyme loading for efficient hydrolysis of rice straw to improve succinate production by metabolically engineered Escherichia coli KJ122 under simultaneous saccharification and fermentation. Bioresour. Technol. 260: 348–356.

    Article  CAS  PubMed  Google Scholar 

  14. Han, S. H., D. H. Cho, Y. H. Kim, and S. J. Shin (2013) Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone-butanol-ethanol fermentation. Energy. 61: 13–17.

    Article  CAS  Google Scholar 

  15. Bankar, S. B., S. A. Survase, H. Ojamo, and T. Granström (2013) Biobutanol: The outlook of an academic and industrialist. Rsc. Adv. 3: 24734–24757.

    Article  CAS  Google Scholar 

  16. Zheng, J., Y. Tashiro, T. Yoshida, M. Gao, Q. Wang, and K. Sonomoto (2013) Continuous butanol fermentation from xylose with high cell density by cell recycling system. Bioresour. Technol. 129: 360–365.

    Article  CAS  PubMed  Google Scholar 

  17. Li, H., W. Luo, Q. Wang, and X. Yu (2014) Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. Appl. Biochem. Biotechnol. 172: 3330–3341.

    Article  CAS  PubMed  Google Scholar 

  18. Van Soest, P. J., J. B. Robertson, and B. A. Lewis (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy. Sci. 74: 3583–3597.

    Article  CAS  PubMed  Google Scholar 

  19. Helal, G. A., M. M. Sarhan, A. N. K. Abu Shahla, and E. K. Abou El-Khair (2007) Effects of Cymbopogon citratus L. essential oil on the growth, morphogenesis and aflatoxin production of Aspergillus flavus ML2-strain. J. Basic. Microbiol. 47: 5–15.

    Article  CAS  PubMed  Google Scholar 

  20. Michałowski, T., A. G. Asuero, and S. Wybraniec (2013) The titration in the Kjeldahl method of nitrogen determination: base or acid as titrant? J. Chem. Educ. 90: 191–197.

    Article  Google Scholar 

  21. Deshpande, S. S., M. Cheryan, and D. K. Salunkhe (1986) Tannin analysis of food products. Crit Rev Food Sci Nutr. 24: 401–449.

    Article  CAS  PubMed  Google Scholar 

  22. Yao, M., L. Huang, J. Zheng, S. Fan, and M. Liu (2013) Assessment of feasibility in determining of Cr in Gannan Navel Orange treated in controlled conditions by laser induced breakdown spectroscopy. Opt. Laser. Technol. 52: 70–74.

    Article  CAS  Google Scholar 

  23. Marsden, W. L., P. P. Gray, G. J. Nippard, and M. R. Quinlan (1982) Evaluation of the DNS method for analysing lignocellulosic hydrolysates. J. Chem. Technol. Biotechnol. 32: 1016–1022.

    Article  CAS  Google Scholar 

  24. Cabrera, M. L. and M. H. Beare (1993) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil. Sci. Soc. Am. J. 57: 1007–1012.

    Article  CAS  Google Scholar 

  25. Li, H., W. Luo, Q. Gu, Q. Wang, W. Hu, and X. Yu (2013) Acetone, butanol, and ethanol production from cane molasses using Clostridium beijerinckii mutant obtained by combined low-energy ion beam implantation and N-methyl-N-nitro-N-nitrosoguanidine induction. Bioresour. Technol. 137: 254–260.

    Article  CAS  PubMed  Google Scholar 

  26. Li, J., J. B. Zhao, M. Zhao, Y. L. Yang, W. H. Jiang, and S. Yang (2010) Screening and characterization of butanol-tolerant microorganisms. Lett. Appl. Microbiol. 50: 373–379.

    Article  CAS  PubMed  Google Scholar 

  27. Woods, D. R. (1995) The genetic engineering of microbial solvent production. Trends. Biotechnol. 13: 259–264.

    Article  CAS  PubMed  Google Scholar 

  28. Giovannoni, S. J. and M. Rapp (2000) Evolution, diversity, and molecular ecology of marine prokaryotes. pp. 47–84. In: D. L. Kirchman (ed.). Microbial Ecology of the Oceans. Jon Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  29. Huzir, N. M., M. M. A. Aziz, S. B. Ismail, B. Abdullah, N. A. N. Mahmood, N. A. Umor, and S. A. F. S. Muhammad (2018) Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation. Renew. Sust. Energ. Rev. 94: 476–485.

    Article  CAS  Google Scholar 

  30. Cheng, C. L., P. Y. Che, B. Y. Chen, W. J. Lee, L. J. Chien, and J. S. Chang (2012) High yield bio-butanol production by solvent-producing bacterial microflora. Bioresour. Technol. 113: 58–64.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, D., Y. Chen, A. Li, F. Ding, T. Zhou, Y. He, B. Li, H. Niu, X. Lin, J. Xie, X. Chen, J. Wu, and H. Ying (2013) Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption. Bioresour. Technol. 129: 321–328.

    Article  CAS  PubMed  Google Scholar 

  32. Madihah, M. S., A. B. Ariff, K. M. Sahaid, A. A. Suraini, and M. I. A. Karim (2001) Direct fermentation of gelatinized sago starch to acetone-butanol-ethanol by Clostridium acetobutylicum. World. J. Microbiol. Biotechnol. 17: 567–576.

    Article  CAS  Google Scholar 

  33. Li, X., Z. Li, J. Zheng, Z. Shi, and L. Li (2012) Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824 using cassava as substrate. Bioresour. Technol. 125: 43–51.

    Article  CAS  PubMed  Google Scholar 

  34. Wu, Y. D., C. Xue, L. J. Chen, and F. W. Bai (2013) Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. J. Biotechnol. 165: 18–21.

    Article  CAS  PubMed  Google Scholar 

  35. Li, H., Q. Zhang, X. Yu, L. Wei, and Q. Wang (2016) Enhancement of butanol production in Clostridium acetobutylicum SE25 through accelerating phase shift by different phases pH regulation from cassava flour. Bioresour. Technol. 201: 148–155.

    Article  CAS  PubMed  Google Scholar 

  36. Hijosa-Valsero, M., A. I. Paniagua-García, and R. Díez-Antolínez (2018) Industrial potato peel as a feedstock for biobutanol production. N. Biotechnol. 46: 54–60.

    Article  CAS  PubMed  Google Scholar 

  37. Kaparaju, P., M. Serrano, A. B. Thomsen, P. Kongjan, and I. Angelidaki (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 100: 2562–2568.

    Article  CAS  PubMed  Google Scholar 

  38. Khedkar, M. A., P. R. Nimbalkar, S. G. Gaikwad, P. V. Chavan, and S. B. Bankar (2016) Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: drying kinetics study. Bioresour. Technol. 225: 359–366.

    Article  PubMed  Google Scholar 

  39. Jin, S. and H. Chen (2007) Near-infrared analysis of the chemical composition of rice straw. Ind. Crops Prod. 26: 207–211.

    Article  CAS  Google Scholar 

  40. Zhong, W., Z. Zhang, Y. Luo, S. Sun, W. Qiao, and M. Xiao (2011) Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour. Technol. 102: 11177–11182.

    Article  CAS  PubMed  Google Scholar 

  41. Maddox, I. S., E. Steiner, S. Hirsch, S. Wessner, N. A. Gutierrez, J. R. Gapes, and K. C. Schuster (2000) The cause of “acid-crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (abe-) fermentation process. J. Mol. Microbiol. Biotechnol. 2: 95–100.

    CAS  PubMed  Google Scholar 

Download references

Acknowldgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21466014), the Natural Science Foundation of Jiangxi Province (Grant No. 20202BABL203042), the Jiangxi Provincial Department of Education Scientific Research Project (Grant No.GJJ160388), the Doctoral Starting up Foundation of Jiangxi Agricultural University (Grant No. 9232305387), and the Training Program of Innovation and Entrepreneurship for Undergraduates from Jiangxi Agricultural University (Grant No. 201810410015). We wish to thank Yuyu Li for helpful discussion on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanguang Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Luo, Y., Peng, S. et al. Enhancement of Butanol Production in a Newly Selected Strain through Accelerating Phase Shift by Different Phases C/N Ratio Regulation from Puerariae Slag Hydrolysate. Biotechnol Bioproc E 26, 256–264 (2021). https://doi.org/10.1007/s12257-020-0133-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0133-3

Keywords

Navigation