Skip to main content
Log in

Modeling pressurized fracture propagation with the isogeometric BEM

  • Original Article
  • Published:
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Aims and scope Submit manuscript

Abstract

This paper simulates the propagation of hydraulic fractures under constant fluid pressure using the isogeometric analysis based on boundary element methods (BEM) i.e. the so called isogeomtric BEM. Due to the seamless integration between computer aided design (CAD) and numerical analysis, the isogeomtric BEM eliminates the meshing procedure and geometric errors, and explicitly parametrizes the crack propagation path. Graded knot insertion near the crack tip is used to effectively capture the stress singularity at the crack tip. The M integral is adopted to extract the stress intensity factors (SIFs). The crack surface and propagation path can be parameterized explicitly with Non-Uniform Rational B-splines (NURBS). The comparison of our numerical results with laboratory experiments and other numerical methods validates the effectiveness of the algorithm. Moreover, we investigate the influence of different factors, including the confining pressure, crack numbers, pore pressure, and natural cracks, on hydraulic fractures and study how multiple cracks propagate under various conditions.

Article highlights

  • The isogeomtric BEM is used to simulate hydraulic fracturing process that is able to eliminate the meshing procedure and geometric errors.

  • The crack surface and propagation path can be parameterized explicitly with Non-Uniform Rational B-splines (NURBS).

  • We investigate the influence of different factors on pressurized fractures and study how multiple cracks propagate under various conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Areias P, Msekh M, Rabczuk T (2016) Damage and fracture algorithm using the screened poisson equation and local remeshing. Eng Fract Mech 158:116–143. https://doi.org/10.1016/j.engfracmech.2015.10.042

    Article  Google Scholar 

  • Becker A (1992) The boundary element methods in engineering. McGraw-Hill Book Company, New York

    Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45(5):601–620

    MATH  Google Scholar 

  • Bruno M, Nakagawa F (1991) Pore pressure influence on tensile fracture propagation in sedimentary rock. Int J Rock Mech Mining Sci Geomech Abst 28(4):261–273. https://doi.org/10.1016/0148-9062(91)90593-B

    Article  Google Scholar 

  • Carrier B, Granet S (2012) Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng Fract Mech 79:312–328

    Google Scholar 

  • Chen L, Liu C, Zhao W, Liu L (2018) An isogeometric approach of two dimensional acoustic design sensitivity analysis and topology optimization analysis for absorbing material distribution. Comput Methods Appl Mech Eng 336:507–532

    MathSciNet  MATH  Google Scholar 

  • Chen L, Marburg S, Zhao W, Liu C, Chen H (2019a) Implementation of isogeometric fast multipole boundary element methods for 2d half-space acoustic scattering problems with absorbing boundary condition. J Theoret Comput Acoust 27(02):1850024

    MathSciNet  Google Scholar 

  • Chen L, Lian H, Liu Z, Chen H, Atroshchenko E, Bordas S (2019b) Structural shape optimization of three dimensional acoustic problems with isogeometric boundary element methods. Comput Methods Appl Mech Eng 355:926–951

    MathSciNet  MATH  Google Scholar 

  • Chen L, Zhang Y, Lian H, Atroshchenko E, Ding C, Bordas S (2020a) Seamless integration of computer-aided geometric modeling and acoustic simulation: Isogeometric boundary element methods based on catmull-clark subdivision surfaces. Adv Eng Softw 149:102879

    Google Scholar 

  • Chen L, Lu C, Lian H, Liu Z, Zhao W, Li S, Chen H, Bordas S (2020b) Acoustic topology optimization of sound absorbing materials directly from subdivision surfaces with isogeometric boundary element methods. Comput Methods Appl Mech Eng 362:112806

    MathSciNet  MATH  Google Scholar 

  • Chen L, Lu C, Zhao W, Chen H, Zheng CJ (2020c) Subdivision surfaces–boundary element accelerated by fast multipole for the structural acoustic problem. J Theoret Comput Acoust 28(2):2050011–1–27

  • Cox M (1972) The numerical evaluation of B-splines. IMA J Appl Math 10(2):134–1492

    MathSciNet  MATH  Google Scholar 

  • Cruse T (1996) Bie fracture mechanics analysis: 25 years of developments. Comput Mech 18(1):1–11

    MathSciNet  MATH  Google Scholar 

  • Cruse T, Rizzo F (1968) A direct formulation and numerical solution of the general transient elastodynamic problem i. J Math Anal Appl 22(1):244–259

    MATH  Google Scholar 

  • De Boor C (1972) On calculating with B-splines. J Approx Theory 6(1):50–62

    MathSciNet  MATH  Google Scholar 

  • Duan K, Li Y, Yang W (2021) Discrete element method simulation of the growth and efficiency of multiple hydraulic fractures simultaneously-induced from two horizontal wells. Geomech Geophys Geo-Energy Geo-Resour. https://doi.org/10.1007/s40948-020-00196-4

    Article  Google Scholar 

  • Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85(4):519

    Google Scholar 

  • Gordeliy E, Peirce A (2015) Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems. Comput Methods Appl Mech Eng 283:474–502

    MathSciNet  MATH  Google Scholar 

  • Guiggiani M, Krishnasamy G, Rudolphi T, Rizzo F (1992) A general algorithm for the numerical solution of hypersingular boundary integral equations. J Appl Mech 59(3):604–614

    MathSciNet  MATH  Google Scholar 

  • He B, Zhuang X (2018) Modeling hydraulic cracks and inclusion interaction using XFEM. Underground space 3(3):218–228

    Google Scholar 

  • Hong H, Chen J (1988) Derivations of integral equations of elasticity. J Eng Mech 114(6):1028–1044

    Google Scholar 

  • Hu Y, Li X, Zhang Z, He J, Li G (2020) Numerical investigation on the hydraulic stimulation of naturally fractured longmaxi shale reservoirs using an extended discontinuous deformation analysis (DDA) method. Geomech Geophys Geo-Energy Geo-Resour 6(4):1–21

    Google Scholar 

  • Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: Cad, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    MathSciNet  MATH  Google Scholar 

  • Khoei A, Hirmand M, Vahab M, Bazargan M (2015) An enriched FEM technique for modeling hydraulically driven cohesive fracture propagation in impermeable media with frictional natural faults: Numerical and experimental investigations. Int J Numer Meth Eng 104(6):439–468

    MathSciNet  MATH  Google Scholar 

  • LaGreca R, Daniel M, Bac A (2005) Local deformation of NURBS curves. Math Methods Curves Surf Tromso 2004:243–252

    MathSciNet  MATH  Google Scholar 

  • Lecampion B (2009) An extended finite element method for hydraulic fracture problems. Commun Numer Methods Eng 25(2):121–133

    MathSciNet  MATH  Google Scholar 

  • Li K, Qian X (2011) Isogeometric analysis and shape optimization via boundary integral. Comput Aided Des 43(11):1427–1437

    Google Scholar 

  • Li C, Niu Z, Hu Z, Hu B, Cheng C (2019) Effectiveness of the stress solutions in notch/crack tip regions by using extended boundary element method. Eng Anal Boundary Elem 108:1–13

    MathSciNet  MATH  Google Scholar 

  • Li Z, Li X, Yu J, Cao W, Wang X (2020) Influence of existing natural fractures and beddings on the formation of fracture network during hydraulic fracturing based on the extended finite element method. Geomech Geophys Geo-Energy Geo-Resour 6(4):58

    Google Scholar 

  • Lian H, Kerfriden P, Bordas S (2016) Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity. Int J Numer Meth Eng 106(12):972–1017

    MathSciNet  MATH  Google Scholar 

  • Lian H, Kerfriden P, Bordas S (2017) Shape optimization directly from CAD: An isogeometric boundary element approach using t-splines. Comput Methods Appl Mech Eng 317:1–41

    MathSciNet  MATH  Google Scholar 

  • Liu Y, Rudolphi T (1991) Some identities for fundamental solutions and their applications to non-singular boundary element formulations. Eng Anal Boundary Elem 8(6):301–311

    Google Scholar 

  • Liu C, Chen L, Zhao W, Chen H (2017) Shape optimization of sound barrier using an isogeometric fast multipole boundary element method in two dimensions. Eng Anal Boundary Elem 85:142–157

    MathSciNet  MATH  Google Scholar 

  • Lo L (2014) Interaction of growing cracks in hydraulic fracturing. Ph.D. thesis

  • Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778

    MathSciNet  MATH  Google Scholar 

  • Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int J Numer Meth Eng 83(10):1273–1311

    MathSciNet  MATH  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng

  • Mohammadnejad T, Khoei A (2013) An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elem Anal Des 73:77–95

    MathSciNet  MATH  Google Scholar 

  • Nguyen B, Tran H, Anitescu C, Zhuang X, Rabczuk T (2016) An isogeometric symmetric galerkin boundary element method for two-dimensional crack problems. Comput Methods Appl Mech Eng 306:252–275

    MathSciNet  MATH  Google Scholar 

  • Nguyen V, Lian H, Rabczuk T, Bordas S (2017) Modelling hydraulic fractures in porous media using flow cohesive interface elements. Eng Geol 225:68–82

    Google Scholar 

  • Niu Z, Cheng C, Zhou H, Hu Z (2007) Analytic formulations for calculating nearly singular integrals in two-dimensional BEM. Eng Anal Boundary Elem 31(12):949–964

    MATH  Google Scholar 

  • Niu Z, Cheng C, Ye J, Recho N (2009) A new boundary element approach of modeling singular stress fields of plane V-notch problems. Int J Solids Struct 46(16):2999–3008

    MathSciNet  MATH  Google Scholar 

  • Niu Z, Hu Z, Cheng C, Zhou H (2015) A novel semi-analytical algorithm of nearly singular integrals on higher order elements in two dimensional BEM. Eng Anal Bound Elem 61:42–51

    MathSciNet  MATH  Google Scholar 

  • Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Eng 44(9):1267–1282

    MATH  Google Scholar 

  • Paluszny A, Zimmerman R (2013) Numerical fracture growth modeling using smooth surface geometric deformation. Eng Fract Mech 108:19–36

    Google Scholar 

  • Peng X, Atroshchenko E, Kerfriden P, Bordas S (2017a) Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth. Comput Methods Appl Mech Eng 316:151–185

    MathSciNet  MATH  Google Scholar 

  • Peng X, Atroshchenko E, Kerfriden P, Bordas S (2017b) Linear elastic fracture simulation directly from CAD: 2d NURBS-based implementation and role of tip enrichment. Int J Fract 204(1):55–78

    Google Scholar 

  • Rogers D (2000) An introduction to NURBS: with historical perspective. Elsevier, New York

    Google Scholar 

  • Rudolphi T (1991) The use of simple solutions in the regularization of hypersingular boundary integral equations. Math Comput Model 15(3–5):269–278

    MathSciNet  MATH  Google Scholar 

  • Scott M, Simpson R, Evans J, Lipton S, Bordas S, Hughes T, Sederberg T (2013) Isogeometric boundary element analysis using unstructured t-splines. Comput Methods Appl Mech Eng 254:197–221

    MathSciNet  MATH  Google Scholar 

  • Seybert A, Soenarko B, Rizzo F, Shippy D (1985) An advanced computational method for radiation and scattering of acoustic waves in three dimensions. J Acoust Soc Am 77(2):362–368

    MATH  Google Scholar 

  • Simpson R, Trevelyan J (2011) A partition of unity enriched dual boundary element method for accurate computations in fracture mechanic. Comput Methods Appl Mech Eng 200(1–4):1–10

    MathSciNet  MATH  Google Scholar 

  • Simpson R, Bordas S, Trevelyan J, Rabczuk T (2012) A two-dimensional isogeometric boundary element method for elastostatic analysis. Comput Methods Appl Mech Eng 209:87–100

    MathSciNet  MATH  Google Scholar 

  • Simpson R, Bordas S, Lian H, Trevelyan J (2013) An isogeometric boundary element method for elastostatic analysis: 2d implementation aspects. Comput Struct 118:2–12

    Google Scholar 

  • Simpson R, Scott M, Taus M, Thomas D, Lian H (2014) Acoustic isogeometric boundary element analysis. Comput Methods Appl Mech Eng 269:265–290

    MathSciNet  MATH  Google Scholar 

  • Sneddon I (1995) Fourier transforms. McGraw-Hill, New York

    MATH  Google Scholar 

  • Telles J (1987) A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals. Int J Numer Methods Eng 24(5):959–973

    MATH  Google Scholar 

  • Yau J, Wang W, Corten H (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47(2):335–341

    MATH  Google Scholar 

  • Zhang B, Ji B, Liu W (2017) The study on mechanics of hydraulic fracture propagation direction in shale and numerical simulation. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 4:119–124

    Google Scholar 

  • Zienkiewicz O, Taylor R (1977) The finite element method. McGraw-Hill Book Company, New York

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial supports from the National Natural Science Foundation of China (NSFC) (Nos. 51904202, 11702238, 52004203, 51904196). Peng would like to acknowledge the Natural Science Foundation of the Jiangsu Higher Education Institutions of China [Grant No. 18KJB130006].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haojie Lian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Wang, Z., Peng, X. et al. Modeling pressurized fracture propagation with the isogeometric BEM. Geomech. Geophys. Geo-energ. Geo-resour. 7, 51 (2021). https://doi.org/10.1007/s40948-021-00248-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40948-021-00248-3

Keywords

Navigation