Skip to main content
Log in

Studies on Temperature Sensitivity of a White Rabbit Network-Based Time Transfer Link

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

An optical fibre link has been established for precise time and frequency transfer utilizing White Rabbit (WR) network. Temperature sensitivity of WR network components on time offset error has been studied in detail. WR node shows significant sensitivity to the ambient temperature variation when it is locked to an external reference frequency. The change in time offset between two nodes reaches up to one nanosecond for a temperature variation of 25 °C. The temperature variation of the optical fibres does not show any noticeable change in time offset during two-way communication as the precision time protocol (PTP) compensates the delay arises for any local temperature variation. However, time offset variation shows significant sensitivity to temperature variation of the fibre when the PTP is not functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Kirchner, Two-way time transfer via communication satellites. Proc. IEEE, 79 (1991) 983–990.

    Article  ADS  Google Scholar 

  2. M. Imae, M. Hosokawa, K. Imamura, H. Yukawa, Y. Shibuya, N. Kurihara et al., Two-way satellite time and frequency transfer networks in Pacific Rim region. IEEE Trans. Instrum. Meas., 50 (2001) 559–562.

    Article  Google Scholar 

  3. V. Smotlacha, A. Kuna, W. Mache, Time transfer using fiber links, EFTF-2010 24th European Frequency and Time Forum, Noordwijk, Netherlands (2010) 1–8.

  4. S. Lukasz, K. Przemyslaw, C. Albin, B. Lukasz and L. Marcin, Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km. Metrologia, 50 (2013) 133–145.

    Article  Google Scholar 

  5. K. Przemyslaw, S. Lukasz, B. Lukasz, K. Jacek and L. Marcin, Ultrastable long-distance fibre-optic time transfer: active compensation over a wide range of delays. Metrologia, 52 (2015) 82–88.

    Article  Google Scholar 

  6. M. Amemiya, M. Imae, Y. Fujii, T. Suzuyama, S. Ohshima et al., Time and frequency transfer and dissemination methods using optical fibre network. IEEJ Trans. Fundam. Mater., 126 (2006) 458–463.

    Article  Google Scholar 

  7. L. Sliwczynski, P. Krehlik and M. Lipinski, Optical fibres in time and frequency transfer. Meas. Sci. Technol., 21 (2010) 075302.

    Article  ADS  Google Scholar 

  8. N. Kaur, F Frank, P.E. Pottie, P. Tuckey, Time and frequency transfer over a 500 km cascaded White Rabbit network, 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EETF/IFCS), Besancon (2017) 86–90.

  9. J.-L. Ferrant, M. Gilson, S. Jobert, M. Mayer, M. Ouellette, L. Montini, et al., Synchronous Ethernet: A method to transport synchronization. IEEE Commun. Mag., 46 (2008) 126–134.

    Article  Google Scholar 

  10. N. Kaur, P. Tuckey, P.E. Pottie, Time transfer over a White Rabbit network, European Frequency and Time Forum (EFTF), York, UK (2016) 1–4.

  11. E.F. Dierikx, A.E. Wallin, T. Fordell, J. Myyry, P. Koponen, M. Merimaa et al., White rabbit precision time protocol on long-distance fiber links. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63 (2016) 945–952.

    Article  Google Scholar 

  12. A. Derviskadic, R. Razzaghi, Q. Walger and M. Paolone, The white rabbit time synchronization protocol for synchrophasor networks. IEEE Trans. Smart Grid, 11 (2020) 726–738.

    Article  Google Scholar 

  13. S.T. Watt, S. Achanta, H. Abubakari, E. Sagen, Z. Korkmaz, H. Ahmed, Understanding and Applying Precision Time Protocol, 2015 Saudi Arabia Smart Grid (SASG), Jeddah, Saudi Arabia (2015) 1–7.

  14. P. Moreira, P. Alvarez, J. Serrano, I. Darwezeh, T. Wlostowski, Digital dual mixer time difference for sub-nanosecond time synchronization in Ethernet, 2010 IEEE International Frequency Control Symposium, Newport Beach, CA, USA (2010) 449–453.

  15. N.S. Bergano and C.R. Davidson, Wavelength division multiplexing in long - haul transmission systems. J. Lightwave Technol., 14 (1996) 1299–1308.

    Article  ADS  Google Scholar 

  16. White Rabbit Lite Embedded Nodes (WRLEN), used in our experiments, are manufactured by “Seven Solutions S. L., Granada-Spain”. The authors, however, put a disclaimer that it is not an endorsement of the exclusive applicability of this particular manufacturer.

Download references

Acknowledgements

Neelam thanks to University Grants Commission (UGC) for providing Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Panja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neelam, Rathore, H.K., Sharma, L. et al. Studies on Temperature Sensitivity of a White Rabbit Network-Based Time Transfer Link. MAPAN 36, 253–258 (2021). https://doi.org/10.1007/s12647-021-00461-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00461-1

Keywords

Navigation