Skip to main content
Log in

On Ribbon Categories for Singlet Vertex Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct two non-semisimple braided ribbon tensor categories of modules for each singlet vertex operator algebra \({\mathcal {M}}(p)\), \(p\ge 2\). The first category consists of all finite-length \({\mathcal {M}}(p)\)-modules with atypical composition factors, while the second is the subcategory of modules that induce to local modules for the triplet vertex operator algebra \({\mathcal {W}}(p)\). We show that every irreducible module has a projective cover in the second of these categories, although not in the first, and we compute all fusion products involving atypical irreducible modules and their projective covers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adamović, D.: Classification of irreducible modules of certain subalgebras of free boson vertex algebra. J. Algebra 270(1), 115–132 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Adamović, D.: A construction of admissible \(A^{(1)}_1\)-modules of level \(-\frac{4}{3}\). J. Pure Appl. Algebra 196(2–3), 119–134 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Adamović, D., Creutzig, T., Genra, N., Yang, J.: The vertex algebras \({\cal{R}}^{(p)}\) and \({\cal{V}}^{(p)}\). Commun. Math. Phys. 383, 1207–1241 (2021)

    ADS  MATH  Google Scholar 

  4. Adamović, D., Milas, A.: Vertex operator algebras associated to modular invariant representations for \(A_1^{(1)}\). Math. Res. Lett. 2(5), 563–575 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Adamović, D., Milas, A.: Logarithmic intertwining operators and \({{\cal{W}}}(2,2p-1)\) algebras. J. Math. Phys. 48(7), 073503 (2007). 20 pp

  6. Adamović, D., Milas, A.: On the triplet vertex algebra \({{\cal{W}}}(p)\). Adv. Math. 217(6), 2664–2699 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Adamović, D., Milas, A.: Lattice construction of logarithmic modules for certain vertex algebras. Selecta Math. (N.S.) 15(4), 535–561 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Adamović, D., Milas, A.: Some applications and constructions of intertwining operators in logarithmic conformal field theory. In: Lie Algebras, Vertex Operator Algebras, and Related Topics. Contemporary Mathematics, vol. 695, pp. 15–27. Amer. Math. Soc., Providence (2017)

  9. Adamović, D., Milas, A., Wang, Q.: On parafermion vertex algebras of \({\mathfrak{sl}}(2)\) and \({\mathfrak{sl}}(3)\) at level \(-\frac{3}{2}\). Commun. Contemp. Math. (2020). https://doi.org/10.1142/S0219199720500868

    Article  Google Scholar 

  10. Auger, J., Creutzig, T., Kanade, S., Rupert, M.: Braided tensor categories related to \({{\cal{B}}}_p\) vertex algebras. Commun. Math. Phys. 378(1), 219–260 (2020)

    ADS  MATH  Google Scholar 

  11. Belavin, A., Polyakov, A., Zamolodchikov, A.: Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B 241(2), 333–380 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Bringmann, K., Mahlburg, K., Milas, A.: Quantum modular forms and plumbing graphs of 3-manifolds. J. Combin. Theory Ser. A 170, 105145 (2020). 32 pp

    MathSciNet  MATH  Google Scholar 

  13. Buican, M., Nishinaka, T.: On the superconformal index of Argyres–Douglas theories. J. Phys. A 49(1), 015401 (2016). 33 pp

    ADS  MathSciNet  MATH  Google Scholar 

  14. Carnahan, S., Miyamoto, M.: Regularity of fixed-point vertex operator subalgebras. arXiv:1603.05645

  15. Carqueville, N., Flohr, M.: Nonmeromorphic operator product expansion and \(C_2\)-cofiniteness for a family of \({{\cal{W}}}\)-algebras. J. Phys. A 39(4), 951–966 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Cheng, M., Chun, S., Ferrari, F., Gukov, S., Harrison, S.: 3D modularity. J. High Energy Phys. 10, 93 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Cordova, C., Shao, S.-H.: Schur indices, BPS particles, and Argyres–Douglas theories. J. High Energy Phys. 1, 37 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Costantino, F., Geer, N., Patureau-Mirand, B.: Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories. J. Topol. 7(4), 1005–1053 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Costantino, F., Geer, N., Patureau-Mirand, B.: Some remarks on the unrolled quantum group of \({\mathfrak{sl}}(2)\). J. Pure Appl. Algebra 219(8), 3238–3262 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Creutzig, T.: \(W\)-algebras for Argyres–Douglas theories. Eur. J. Math. 3(3), 659–690 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Creutzig, T.: Logarithmic \(W\)-algebras and Argyres–Douglas theories at higher rank. J. High Energy Phys. 11, 188 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Creutzig, T.: Fusion categories for affine vertex algebras at admissible levels. Selecta Math. (N. S.) 25(2), 27 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Creutzig, T., Gannon, T.: Logarithmic conformal field theory, log-modular tensor categories and modular forms. J. Phys. A 50(40), 404004 (2017). 37 pp

    MathSciNet  MATH  Google Scholar 

  24. Creutzig, T., Gainutdinov, A., Runkel, I.: A quasi-Hopf algebra for the triplet vertex operator algebra. Commun. Contemp. Math. 22(3), 1950024 (2020). 71 pp

    MathSciNet  MATH  Google Scholar 

  25. Creutzig, T., Genra, N., Nakatsuka, S.: Duality of subregular \({{\cal{W}}}\)-algebras and principal \({{\cal{W}}}\)-superalgebras. Adv. Math. 383, 107685 (2021). 52 pp

    MathSciNet  MATH  Google Scholar 

  26. Creutzig, T., Huang, Y.-Z., Yang, J.: Braided tensor categories of admissible modules for affine Lie algebras. Commun. Math. Phys. 362(3), 827–854 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Creutzig, T., Jiang, C., Hunziker, F.O., Ridout, D., Yang, J.: Tensor categories arising from Virasoro algebras. Adv. Math. 380, 107601 (2021). 35 pp

    MathSciNet  MATH  Google Scholar 

  28. Creutzig, T., Kanade, S., Linshaw, A., Ridout, D.: Schur–Weyl duality for Heisenberg cosets. Transform. Groups 24(2), 301–354 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Creutzig, T., Kanade, S., McRae, R.: Tensor Categories for Vertex Operator Superalgebra Extensions. Mem. Amer. Math. Soc. (to appear). arXiv:1705.05017

  30. Creutzig, T., Kanade, S., McRae, R.: Gluing vertex algebras. arXiv:1906.00119

  31. Creutzig, T., McRae, R., Yang, J.: Direct limit completions of vertex tensor categories. In: Communications in Contemporary Mathematics (to appear). arXiv:2006.09711

  32. Creutzig, T., Milas, A.: False theta functions and the Verlinde formula. Adv. Math. 262, 520–545 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Creutzig, T., Milas, A.: Higher rank partial and false theta functions and representation theory. Adv. Math. 314, 203–227 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Creutzig, T., Milas, A., Rupert, M.: Logarithmic link invariants of \({\overline{U}}^H_q({\mathfrak{sl}}_2)\) and asymptotic dimensions of singlet vertex algebras. J. Pure Appl. Algebra 222(10), 3224–3247 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Creutzig, T., Ridout, D.: Relating the archetypes of logarithmic conformal field theory. Nuclear Phys. B 872(3), 348–391 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional level WZW models II. Nuclear Phys. B 875(2), 423–458 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Creutzig, T., Ridout, D., Wood, S.: Coset constructions of logarithmic \((1, p)\)-models. Lett. Math. Phys. 104(5), 553–583 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Creutzig, T., Rupert, M.: Uprolling unrolled quantum groups. Commun. Contemp. Math. (2021). https://doi.org/10.1142/S0219199721500231

    Article  Google Scholar 

  39. Creutzig, T., Yang, J.: Tensor categories of affine Lie algebras beyond admissible level. Math. Ann. (2021). https://doi.org/10.1007/s00208-021-02159-w

    Article  MathSciNet  MATH  Google Scholar 

  40. De Renzi, M.: Non-semisimple extended topological quantum field theories. arXiv:1703.07573

  41. De Renzi, M., Geer, N., Patureau-Mirand, B.: Non-semisimple quantum invariants and TQFTs from small and unrolled quantum groups. Algebr. Geom. Topol. 20(7), 3377–3422 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. In: Progress in Mathematics, vol. 112, p. x+202. Birkhäuser Boston, Inc., Boston (1993)

  43. Dong, C., Li, H., Mason, G.: Compact automorphism groups of vertex operator algebras. Internat. Math. Res. Notices 18, 913–921 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Feigin, B., Gainutdinov, A., Semikhatov, A., Tipunin, I.: Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math. Phys. 265(1), 47–93 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Feigin, B., Gainutdinov, A., Semikhatov, A., Tipunin, I.: Logarithmic extensions of minimal models: characters and modular transformations. Nuclear Phys. B 757(3), 303–343 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Feigin, B., Tipunin, I.: Logarithmic CFTs connected with simple Lie algebras. arXiv:1002.5047

  47. Flandoli, I., Lentner, S.: Logarithmic conformal field theories of type \(B_n\), \(\ell =4\) and symplectic fermions. J. Math. Phys. 59(7), 071701 (2018). 35 pp

    ADS  MathSciNet  MATH  Google Scholar 

  48. Frenkel, I., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104(494), viii+64 (1993)

    MathSciNet  MATH  Google Scholar 

  49. Fuchs, J., Hwang, S., Semikhatov, A., Tipunin, I.: Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247(3), 713–742 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Gukov, S., Pei, D., Putrov, P., Vafa, C.: BPS spectra and \(3\)-manifold invariants. J. Knot Theory Ramifications 29(2), 2040003 (2020). 85 pp

    MathSciNet  MATH  Google Scholar 

  51. Huang, Y.-Z.: Virasoro vertex operator algebras, the (nonmeromorphic) operator product expansion and the tensor product theory. J. Algebra 182(1), 201–234 (1996)

    MathSciNet  MATH  Google Scholar 

  52. Huang, Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10(1), 103–154 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Huang, Y.-Z.: Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10(suppl. 1), 871–911 (2008)

    MathSciNet  MATH  Google Scholar 

  54. Huang, Y.-Z.: Cofiniteness conditions, projective covers and the logarithmic tensor product theory. J. Pure Appl. Algebra 213(4), 458–475 (2009)

    MathSciNet  MATH  Google Scholar 

  55. Huang, Y.-Z., Kirillov Jr., A., Lepowsky, J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337(3), 1143–1159 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules. In: Conformal Field Theories and Tensor Categories. Math. Lect. Peking Univ., pp. 169–248. Springer, Heidelberg (2014)

  57. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, II: logarithmic formal calculus and properties of logarithmic intertwining operators. arXiv:1012.4196

  58. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, III: intertwining maps and tensor product bifunctors. arXiv:1012.4197

  59. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, IV: constructions of tensor product bifunctors and the compatibility conditions. arXiv:1012.4198

  60. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, V: convergence condition for intertwining maps and the corresponding compatibility condition. arXiv:1012.4199

  61. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VI: expansion condition, associativity of logarithmic intertwining operators, and the associativity isomorphisms. arXiv:1012.4202

  62. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VII: convergence and extension properties and applications to expansion for intertwining maps. arXiv:1110.1929

  63. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VIII: braided tensor category structure on categories of generalized modules for a conformal vertex algebra. arXiv:1110.1931

  64. Kausch, H.: Extended conformal algebras generated by a multiplet of primary fields. Phys. Lett. B 259(4), 448–455 (1991)

    ADS  MathSciNet  Google Scholar 

  65. Kazhdan, D., Lusztig, G.: Affine Lie algebras and quatum groups. Int. Math. Res. Notices 2, 21–29 (1991)

    MATH  Google Scholar 

  66. Kazhdan, D., Lusztig, G.: Tensor structure arising from affine Lie algebras, I. J. Am. Math. Soc. 6, 905–947 (1993)

    MathSciNet  MATH  Google Scholar 

  67. Kazhdan, D., Lusztig, G.: Tensor structure arising from affine Lie algebras, II. J. Am. Math. Soc. 6, 949–1011 (1993)

    MathSciNet  MATH  Google Scholar 

  68. Kazhdan, D., Lusztig, G.: Tensor structure arising from affine Lie algebras, III. J. Am. Math. Soc. 7, 335–381 (1994)

    MathSciNet  MATH  Google Scholar 

  69. Kazhdan, D., Lusztig, G.: Tensor structure arising from affine Lie algebras, IV. J. Am. Math. Soc. 7, 383–453 (1994)

    MathSciNet  MATH  Google Scholar 

  70. Kirillov Jr., A.: Modular categories and orbifold models. Commun. Math. Phys. 229(2), 309–335 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  71. Kirillov Jr., A., Ostrik, V.: On a \(q\)-analogue of the McKay correspondence and the \(ADE\) classification of \({\mathfrak{sl}}_2\) conformal field theories. Adv. Math. 171(2), 183–227 (2002)

    MathSciNet  MATH  Google Scholar 

  72. Kondo, H., Saito, Y.: Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to \({\mathfrak{sl}}_2\). J. Algebra 330, 103–129 (2011)

    MathSciNet  MATH  Google Scholar 

  73. Lentner, S.: Quantum groups and Nichols algebras acting on conformal field theories. Adv. Math. 378, 107517 (2021). 71 pp

    MathSciNet  MATH  Google Scholar 

  74. Li, H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure Appl. Algebra 96(3), 279–297 (1994)

    MathSciNet  MATH  Google Scholar 

  75. Li, H.: The physics superselection principle in vertex operator algebra theory. J. Algebra 196(2), 436–457 (1997)

    MathSciNet  MATH  Google Scholar 

  76. McRae, R.: On the tensor structure of modules for compact orbifold vertex operator algebras. Math. Z. 296(1–2), 409–452 (2020)

    MathSciNet  MATH  Google Scholar 

  77. McRae, R., Yang, J.: Structure of Virasoro tensor categories at central charge \(13-6p-6p^{-1}\) for integers \(p>1\). arXiv:2011.02170

  78. Miyamoto, M.: Flatness and semi-rigidity of vertex operator algebras. arXiv:1104.4675

  79. Miyamoto, M.: \(C_1\)-Cofiniteness and Fusion Products of Vertex Operator Algebras, Conformal Field Theories and Tensor Categories. Math. Lect. Peking Univ., pp. 271–279. Springer, Heidelberg (2014)

    MATH  Google Scholar 

  80. Nagatomo, K., Tsuchiya, A.: The triplet vertex operator algebra \(W(p)\) and the restricted quantum group \({\overline{U}}_q(sl_2)\) at \(q=e^{\frac{\pi i}{p}}\). In: Exploring New Structures and Natural Constructions in Mathematical Physics. Adv. Stud. Pure Math., vol. 61, pp. 1–49. Math. Soc. Japan (2011)

  81. Park, S.: Higher rank \({\hat{Z}}\) and \(F_K\). SIGMA Symmetry Integrab. Geom. Methods Appl. 16, 17 (2020)

    MATH  Google Scholar 

  82. Rupert, M.: Categories of weight modules for unrolled restricted quantum groups at roots of unity. arXiv:1910.05922

  83. Sugimoto, S.: On the Feigin-Tipunin conjecture. arXiv:2004.05769

  84. Tsuchiya, A., Wood, S.: The tensor structure on the representation category of the \({{\cal{W}}}_{p}\) triplet algebra. J. Phys. A 46(44), 445203 (2013). 40 pp

    ADS  MathSciNet  MATH  Google Scholar 

  85. Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nuclear Phys. B 300(3), 360–376 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

TC acknowledges support from NSERC discovery grant RES0048511. RM thanks the University of Alberta for its hospitality during the visit in which this work was begun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwei Yang.

Additional information

Communicated by H-T.Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creutzig, T., McRae, R. & Yang, J. On Ribbon Categories for Singlet Vertex Algebras. Commun. Math. Phys. 387, 865–925 (2021). https://doi.org/10.1007/s00220-021-04097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04097-9

Navigation