Skip to main content

Advertisement

Log in

Comparative proteomics and variations in extracellular matrix of Candida tropicalis biofilm in response to citral

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Candida tropicalis is an opportunistic human pathogen with an ability to cause superficial as well as systemic infections in immunocompromised patients. The formation of biofilm by C. tropicalis can cause dreadful and persistent infections which are difficult to treat due to acquired resistance. Presently, available anti-Candida drugs exhibit a high frequency of resistance, low specificity and toxicity at a higher dosage. In addition, the discovery of natural or synthetic anti-Candida drugs is slow paced and often does not pass clinical trials. Citral, a monoterpene aldehyde, has shown effective antimicrobial activities against various microorganisms. However, only few studies have elaborated the action of citral against the biofilm of C. tropicalis. In the present work, the aim was to study the fungicidal effect, differential expression of proteome and changes in extracellular matrix in response to the sub-lethal concentration (16 µg/mL) of citral. The administration of citral on C. tropicalis biofilm leads to a fungicidal effect. Furthermore, the differential expression of proteome has revealed twenty-five proteins in C. tropicalis biofilm, which were differentially expressed in the presence of citral. Among these, amino acid biosynthesis (Met6p, Gln1p, Pha2p); nucleotide biosynthesis (Xpt1p); carbohydrate metabolism (Eno1p, Fba1p, Gpm1p); sterol biosynthesis (Mvd1p/Erg19p, Hem13p); energy metabolism (Dnm1p, Coa1p, Ndk1p, Atp2p, Atp4p, Hts1p); oxidative stress (Hda2p, Gre22p, Tsa1p, Pst2p, Sod2p) and biofilm-specific (Adh1p, Ape1p, Gsp1p) proteins were identified. The overexpression of oxidative stress–related proteins indicates the response of biofilm cell to combating oxidative stress during citral treatment. Moreover, the upregulation of Adh1p is of particular interest because it subsidizes the biofilm inhibition through ethanol production as a cellular response. The augmented expression of Mvd1p/Erg19p signifies the effect of citral on ergosterol biosynthesis. The presence of citral has also shown an increment in hexosamine and ergosterol component in extracellular matrix of C. tropicalis biofilm. Hence, it is indicated that the cellular response towards citral acts through multifactorial processes. This study will further help in the interpretation of the effect of citral on C. tropicalis biofilm and development of novel antifungal agents against these potential protein targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcazar-Fuoli L (2016) Amino acid biosynthetic pathways as antifungal targets for fungal infections. Virulence 7:376–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008

    Article  CAS  PubMed  Google Scholar 

  • Bammert GF, Fostel JM (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother 44:1255–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergès T, Guyonnet D, Karst F (1997) The Saccharomyces cerevisiae mevalonate diphosphate decarboxylase is essential for viability, and a single Leu-to-Pro mutation in a conserved sequence leads to thermosensitivity. J Bacteriol 179:4664–4670

    Article  PubMed  PubMed Central  Google Scholar 

  • Bizerra FC, Nakamura CV, De Poersch C et al (2008) Characteristics of biofilm formation by Candida tropicalis and antifungal resistance. FEMS Yeast Res 8:442–450

    Article  CAS  PubMed  Google Scholar 

  • Bleazard W, McCaffery JM, King EJ et al (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1:298–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braunwarth A, Fromont-Racine M, Legrain P et al (2003) Identification and characterization of a novel RanGTP-binding protein in the yeast Saccharomyces cerevisiae. J Biol Chem 278:15397–15405

    Article  CAS  PubMed  Google Scholar 

  • Brown AJP, Odds FC, Gow NAR (2007) Infection-related gene expression in Candida albicans. Curr Opin Microbiol 10:307–313

    Article  CAS  PubMed  Google Scholar 

  • Carrozza MJ, Utley RT, Workman JL, Cote J (2003) The diverse functions of histone acetyltransferase complexes. TRENDS Genet 19:321–329

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti A, Sood P, Rudramurthy SM et al (2015) Incidence, characteristics and outcome of ICU-acquired candidemia in India. Intensive Care Med 41:285–295

    Article  PubMed  Google Scholar 

  • Chatrath A, Kumari P, Gangwar R, Prasad R (2018) Investigation of differentially expressed proteins of Candida tropicalis biofilm in response to citral. J Proteomics Bioinform 11:57–61

    Article  Google Scholar 

  • Chatrath A, Gangwar R, Kumari P, Prasad R (2019) In vitro anti-biofilm activities of citral and thymol against Candida tropicalis. J Fungi 5:13

    Article  CAS  Google Scholar 

  • da Silva CD, Guterres SS, Weisheimer V, Schapoval EES (2008) Antifungal activity of the lemongrass oil and citral against Candida spp. Braz J Infect Dis 12:63–66

    Article  Google Scholar 

  • da Silva CR, de Andrade Neto JB, Sidrim JJC et al (2013) Synergistic effects of amiodarone and fluconazole on Candida tropicalis resistant to fluconazole. Antimicrob Agents Chemother 57:1691–1700

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies MJ (2004) Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 3:17–25

    Article  CAS  PubMed  Google Scholar 

  • Dismukes WE (2006) Antifungal therapy: lessons learned over the past 27 years. Clin Infect Dis 42:1289–1296

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Liu G, Li J et al (2020) Antimicrobial activity of lemongrass essential oil (Cymbopogon flexuosus) and its active component citral against dual-species biofilms of Staphylococcus aureus and Candida Species. Front Cell Infect Microbiol 10:603858

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson BR, Lawrence SJ, Leclaire JPR et al (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569

    Article  CAS  Google Scholar 

  • Gowri M, Beaula WS, Biswal J et al (2016) β-lactam substituted polycyclic fused pyrrolidine/pyrrolizidine derivatives eradicate C. albicans in an ex vivo human dentinal tubule model by inhibiting sterol 14-α demethylase and cAMP pathway. Biochim Biophys Acta - Gen Subj 1860:636–647

    Article  CAS  Google Scholar 

  • Guetsova ML, Crother TR, Taylor MW, Daignan-Fornier B (1999) Isolation and characterization of the Saccharomyces cerevisiae XPT1 gene encoding xanthine phosphoribosyl transferase. J Bacteriol 181:2984–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoehamer CF, Cummings ED, Hillard GM, Rogers PD (2010) Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrob Agents Chemother 54:1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jong AY, Ma JJ (1991) Saccharomyces cerevisiae nucleoside-diphosphate kinase: purification, characterization, and substrate specificity. Arch Biochem Biophys 291:241–246

    Article  CAS  PubMed  Google Scholar 

  • Kristanc L, Božič B, Jokhadar SZ et al (2019) The pore-forming action of polyenes: from model membranes to living organisms. Biochim Biophys Acta Biomembr 1861:418–430

    Article  CAS  PubMed  Google Scholar 

  • Lambou K, Lamarre C, Beau R et al (2010) Functional analysis of the superoxide dismutase family in Aspergillus fumigatus. Mol Microbiol 75:910–923

    Article  CAS  PubMed  Google Scholar 

  • Leite MCA, de Bezerra AP, de Souza JP et al (2014) Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evid-Based Complementary Altern Med 2014:378280

    Article  Google Scholar 

  • Lewis JK, Wei J, Siuzdak G (2006) Matrix-assisted laser desorption/ionization mass spectrometry in peptide and protein analysis. In: Encyclopedia of analytical chemistry: applications, theory and instrumentation

  • Li L, Naseem S, Sharma S, Konopka JB (2015) Flavodoxin-like proteins protect Candida albicans from oxidative stress and promote virulence. PLoS Pathog 11:e1005147

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindon JC, Nicholson JK, Holmes E, Everett JR (2000) Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn Reson An Educ J 12:289–320

    Article  CAS  Google Scholar 

  • Machová E, Bystrický S (2013) Antioxidant capacities of mannans and glucans are related to their susceptibility of free radical degradation. Int J Biol Macromol 61:308–311

    Article  PubMed  Google Scholar 

  • Montagnoli C, Sandini S, Bacci A et al (2004) Immunogenicity and protective effect of recombinant enolase of Candida albicans in a murine model of systemic candidiasis. Med Mycol 42:319–324

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Mohamed S, Chandra J et al (2006) Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect Immun 74:3804–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natsoulis G, Hilger F, Fink GR (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46:235–243

    Article  CAS  PubMed  Google Scholar 

  • Onawunmi GO (1989) Evaluation of the antimicrobial activity of citral. Lett Appl Microbiol 9:105–108

    Article  CAS  Google Scholar 

  • Parks LW, Casey WM (1995) Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol 49:95–116

    Article  CAS  PubMed  Google Scholar 

  • Peyrot F, Ducrocq C (2008) Potential role of tryptophan derivatives in stress responses characterized by the generation of reactive oxygen and nitrogen species. J Pineal Res 45:235–246

    Article  CAS  PubMed  Google Scholar 

  • Pierrel F, Bestwick ML, Cobine PA et al (2007) Coa1 links the Mss51 post-translational function to Cox1 cofactor insertion in cytochrome c oxidase assembly. EMBO J 26:4335–4346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers PD, Vermitsky JP, Edlind TD, Hilliard GM (2006) Proteomic analysis of experimentally induced azole resistance in Candida glabrata. J Antimicrob Chemother 58:434–438

    Article  CAS  PubMed  Google Scholar 

  • Saddiq AA, Khayyat SA (2010) Chemical and antimicrobial studies of monoterpene: Citral. Pestic Biochem Physiol 98:89–93

    Article  CAS  Google Scholar 

  • Seneviratne CJ, Wang Y, Jin L et al (2008) Candida albicans biofilm formation is associated with increased anti-oxidative capacities. Proteomics 8:2936–2947

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Tomas H, Havliš J et al (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  Google Scholar 

  • Shin DH, Jung S, Park SJ et al (2005) Characterization of thiol-specific antioxidant 1 (TSAI) of Candida albicans. Yeast 22:907–918

    Article  CAS  PubMed  Google Scholar 

  • Simpson RJ (2011) Preparation of extracts from yeast. Cold Spring Harb Protoc 2011:pdb-prot5545

  • Sogin EM, Anderson P, Williams P et al (2014) Application of 1H-NMR metabolomic profiling for reef-building corals. PLoS ONE 9:e111274

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer J, Phister TG, Smart KA, Greetham D (2014) Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress. BMC Res Notes 7:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Suliman HS, Appling DR, Robertus JD (2007) The gene for cobalamin-independent methionine synthase is essential in Candida albicans: a potential antifungal target. Arch Biochem Biophys 467:218–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas DP, Bachmann SP, Lopez-Ribot JL (2006) Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics 6:5795–5804

    Article  CAS  PubMed  Google Scholar 

  • Van Acker H, Van Dijck P, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 22:326–333

    Article  PubMed  Google Scholar 

  • Vinogradov AD (1999) Mitochondrial ATP synthase: fifteen years later. BIOCHEM C/C BIOKHIMIIA 1219–1229

  • Yike I (2011) Fungal proteases and their pathophysiological effects. Mycopathologia 171:299–323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for providing financial support in the form of fellowship to AC.

Author information

Authors and Affiliations

Authors

Contributions

AC and RP conceptualized and designed the experiments. AC performed the experiments and MK helped with NMR data acquisition. AC and RP analysed the data and wrote the manuscript. RP edited and finalized the manuscript.

Corresponding author

Correspondence to Ramasare Prasad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Peter Nick

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatrath, A., Kumar, M. & Prasad, R. Comparative proteomics and variations in extracellular matrix of Candida tropicalis biofilm in response to citral. Protoplasma 259, 263–275 (2022). https://doi.org/10.1007/s00709-021-01658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01658-6

Keywords

Navigation