Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermal effects in molecular gas-filled hollow-core fibers

Abstract

Few-cycle sources with high average powers are required for applications to attosecond science. Raman-enhanced spectral broadening of Yb-doped laser amplifiers in molecular gases can yield few-cycle pulses, but thermal excitation of vibrational and rotational degrees of freedom may preclude high-power operation. Here we investigate changes in the spectral broadening associated with repetitive laser interactions in an ${{\rm{N}}_2}{\rm{O}}$-filled hollow-core fiber. By comparing experimental measurements of the spectrum associated with each laser pulse to simulations based on a density matrix model, we find that losses in a spectral bandwidth and transmission are largely dominated by thermal excitation of the gas.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Mid-infrared fiber gas amplifier in acetylene-filled hollow-core fiber

Wei Huang, Zhiyue Zhou, Yulong Cui, Zefeng Wang, and Jinbao Chen
Opt. Lett. 47(18) 4676-4679 (2022)

Highly efficient deep UV generation by four-wave mixing in gas-filled hollow-core photonic crystal fiber

Federico Belli, Amir Abdolvand, John C. Travers, and Philip St. J. Russell
Opt. Lett. 44(22) 5509-5512 (2019)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental Document

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved