Skip to main content
Log in

Atomic-Scale Investigations of the Interaction Between Oxygen and (Fe3O4) (1 1 1) Surface

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The interaction between O2 and magnetite (Fe3O4) (1 1 1) surface is investigated using density functional theory (DFT). The calculated results show that O2 perpendicular to the Fetet-terminated and parallel to the Feoct-terminated are the two of the most stable configurations, which is converted to a similar structure after optimization. The adsorbed O2 gains charges from the nearest Fe atom, while the Fe atom gets compensation from the surface. Further analysis of two stable structures show that there is a strong interaction between O2 and Fe3O4 (1 1 1) surface, and the O–O bond is elongated and weakened after adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig.5
Fig. 6

Similar content being viewed by others

References

  1. Fan X-h, Yang G-m, Chen X-l, Gao L, Huang X-x, and Li X, Comput Chem Eng 79 (2015) 80.

  2. Zhou F, Li Y, Sun Y, and Li B, JOM 72 (2020) 1406.

  3. Ljung A-L, Lundström T S, Marjavaara B D, and Tano K, Dry Technol 29 (2011) 9.

    Article  Google Scholar 

  4. Ljung A-L, Staffan Lundström T, Daniel Marjavaara B, and Tano K, Int J Heat Mass Tran 54 (2011) 17.

    Article  Google Scholar 

  5. Feng J X, Xie Z Y, and Chen Y M, J Iron Steel Res Int 19 (2012) 2.

    Article  Google Scholar 

  6. Vitoretti F dP, and de Castro J A, J Mater Res Technol 2 (2013) 4.

    Article  Google Scholar 

  7. Prusti P, Nayak B K, and Biswal S K, T Indian I Metals 70 (2016) 2.

    Google Scholar 

  8. Fu G, Li W, Chu M, and Zhu M, Metall Mater Trans B 51 (2019) 1.

    Google Scholar 

  9. Sandeep Kumar T K, Viswanathan N N, Ahmed H, Dahlin A, Andersson A, and Bjorkman B, Metall Mater Trans B 50 (2018) 1.

    Google Scholar 

  10. Tang M, Cho H J, and Pistorius P C, Metall Mater Trans B 45 (2014) 4.

    Google Scholar 

  11. Fonin M, Pentcheva R, Dedkov Y S, Sperlich M, Vyalikh D V, Scheffler M, Ruediger U, and Guentherodt G, Phys Rev B 72 (2005) 10.

    Article  Google Scholar 

  12. Santos-Carballal D, Roldan A, Grau-Crespo R, and Leeuw N H D, Phys Chem Chem Phys 16 (2014) 39.

    Article  Google Scholar 

  13. Yang W, Tian H, Liao J, Wang Y, Liu L, Zhang L, and Lu A, Appl Surf Sci 507 (2020) 145092.

  14. Nie S, Starodub E, Monti M, Siegel D A, Vergara L, El Gabaly F, Bartelt N C, de la Figuera J, and McCarty K F, J Am Chem Soc 135 (2013) 27.

    Article  Google Scholar 

  15. Harris R A, J Mol Liq 288 (2019) 111084.

  16. Gonçalves M A, Peixoto F C, Cunha E F F D, and Ramalho T C, Chem Phys Lett 609 (2014) 88.

  17. Mejia-Olvera R, Reveles J U, Pacheco-Ortín S M, and Santoyo-Salazar J, Chem Phys Lett 706 (2018) 494.

  18. Henderson M A, and Engelhard M H, J Phys Chem C (2014) 29058.

  19. Parkinson G S, Novotny Z, Jacobson P, Schmid M, and Diebold U, J Am Chem Soc 133 (2011) 32.

    Article  Google Scholar 

  20. Busch M, Mehar M, Merte L R, Shipilin M, Lundgren M, Weaver J F, and Grönbeck H, Chem Phys Lett 693 (2018) 84.

  21. Yang T, Wen X-D, Huo C-F, Li Y-W, Wang J, and Jiao H, J Mol Catal A-chem 302 (2009) 1.

    Article  Google Scholar 

  22. Meng Y, Liu X-Y, Bai M-M, Chen M-M, Ma Y-J, and Wen X-D, Appl Surf Sci 502 (2020) 144097.

  23. Clark S J, Segall M D, Pickard M D, Hasnip P J, Probert M I, Refson K, and Payne M C, Z Kristallogr Cryst Mater 220 (2005) 5/6.

    Article  Google Scholar 

  24. Perdew J P, Burke K, and Ernzerhof M, Phys Rev Lett 78 (1997) 18.

    Article  Google Scholar 

  25. Perdew J P, Chevary J, Vosko S, Jackson K A, Pederson M R, Singh D, and Fiolhais C, Phys Rev B 48 (1993) 7.

    Article  Google Scholar 

  26. Huang D M, Cao D B, Li Y W, and Jiao H, J Phys Chem B 110 (2006) 28.

    Article  Google Scholar 

  27. Lemire C, Meyer R, Henrich V E, Shaikhutdinov S, and Freund H J, Surf Sci 572 (2004) 1.

    Article  Google Scholar 

  28. Ahdjoudj J, Martinsky J, Minot C, Hove M A V, and Somorjai G A, Surf Sci 443 (1999) 1.

    Article  Google Scholar 

  29. Sun G A, Li C, Zhang D, and Wang Y, Appl Surf Sci 333 (2015) 229.

  30. Xu Y, Liao N, Zhang M, and Xue M, Nanoscale 12 (2020) 7098.

  31. Huber K-P, Molecular spectra and molecular structure: 4. Constants of diatomic molecules, Van Nostrand Reinhold (1979).

  32. Zhang Q, Zhang M, and Wiltowski T, PHYS CHEM CHEM PHYS 19 (2017) 43.

    Google Scholar 

  33. Haavik C, Stolen S, Fjellvag H, Hanfland M, and Hausermann D, Am Mineral 85 (2000) 3.

    Article  Google Scholar 

  34. Zhong H, Wen L, Li J, Xu J, Hu M, and Yang Z, Powder Technol 303 (2016) 100.

  35. Segall M, Shah R, Pickard C, and Payne M, Phys Rev B 54 (1996) 23.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Natural Science Foundation of China (51675245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boquan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Zhang, M., Pu, Z. et al. Atomic-Scale Investigations of the Interaction Between Oxygen and (Fe3O4) (1 1 1) Surface. Trans Indian Inst Met 74, 1713–1719 (2021). https://doi.org/10.1007/s12666-021-02270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02270-1

Keywords

Navigation