Skip to main content
Log in

Magnetoacoustic solitons in Alkali-fullerene plasmas

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Nonlinear propagation of magnetoacoustic waves in magnetized, collisionless, warm bi-ion plasmas with positive and negative ions of different masses and charge states are investigated. The two-fluid model is used here. Using reductive perturbation technique, the Korteweg-de Vries equation is derived as nonlinear dispersion relation, and its solution for the magnetoacoustic solitons propagating in the direction perpendicular to the external magnetic field is obtained. Using experimental values for the plasma parameters, magnetoacoustic soliton structures for K-fullerene plasma are illustrated along with some other useful alkali-fullerene plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C K Goertz Rev. Geophys. 27 271 (1989)

    Article  ADS  Google Scholar 

  2. N Sato Plasma Sources Sci. Technol. 3 395 (1994)

    Article  ADS  Google Scholar 

  3. N Sato, T Mieno, T Hirata, Y Yagi, R Hatakeyama and SIizuka Phys. Plasmas 1 3480 (1994)

    Article  ADS  Google Scholar 

  4. A Hasegawa and P K Shukla Phys. Scr. 116 105 (2005)

    Article  Google Scholar 

  5. T Kaladze, S Mahmood and H Ur-Rehman Phys. Scr. 86 035506 (2012)

    Article  ADS  Google Scholar 

  6. W Oohara and R Hatakeyama Phys. Rev. Lett. 91 205005 (2003)

    Article  ADS  Google Scholar 

  7. W Oohara, D Date and R Hatakeyama Phys. Rev. Lett. 95 175003 (2005)

    Article  ADS  Google Scholar 

  8. W Ooharaand and R Hatakeyama Phys. Plasmas 14 055704 (2007)

    Article  ADS  Google Scholar 

  9. W Masood, S Mahmood and N Imtiaz Phys. Plasmas 16 122306 (2009)

    Article  ADS  Google Scholar 

  10. S Mahmood and H Ur-Rehman Phys. Plasmas 17 072305 (2010)

    Article  ADS  Google Scholar 

  11. I Kourakis, W M Moslem, U M Abdelsalam, R Sabry and P K Shukla Plasma Fusion Res. 4 018 (2009)

    Article  ADS  Google Scholar 

  12. S Ghosh, A Adak and M Khan Phys. Plasmas 21 012303 (2014)

    Article  ADS  Google Scholar 

  13. A Mushtaq, M Ikram and R E H Clark Braz. J. Phys. 44 614 (2014)

    Article  ADS  Google Scholar 

  14. S Sruan, J H Man and S Wu J. Plasma Phys. 79 825 (2013)

    Article  ADS  Google Scholar 

  15. R Shisen, W Shan and Z Cheng Phys. Scr. 87 045503 (2013)

    Article  ADS  Google Scholar 

  16. A Adak, A Sikdar, S Ghosh and M Khan Phys. Plasmas 23 062124 (2016)

    Article  ADS  Google Scholar 

  17. S Hussain and H Hasnain Phys. Plasmas 24 032106 (2017)

    Article  ADS  Google Scholar 

  18. T Hirata, R Hatakeyama, T Mieno and N Sato J. Vac. Sci. Technol. A 14 615 (1996)

    Article  ADS  Google Scholar 

  19. A F Hebard et al. Nature 350 600 (1991)

    Article  ADS  Google Scholar 

  20. W Cui et al. Diam. Relat. Mater 20 93 (2011)

    Article  ADS  Google Scholar 

  21. A P Ramirez Physica C 514 166 (2015)

    Article  ADS  Google Scholar 

  22. F Sunqi et al. Solid State Commun. 80 63 (1991)

    Article  Google Scholar 

  23. G H Jeong, R Hatakeyama, T Hirata, K Tohji, K Motomiya and N SatoAppl Phys. Lett. 79 4213 (2001)

    Google Scholar 

  24. G H Jeong, T Hirata, R Hatakeyama, K Tohji and K Motomiya Carbon 40 2247 (2002)

    Article  Google Scholar 

  25. H Takeya et al. Molecules 17 4851 (2012)

    Article  Google Scholar 

  26. H Takeya et al. Mater. Res. Bull. 48 343 (2013)

    Article  Google Scholar 

  27. H Takeya et al. J. Phys. Condens. Matter 28 354003 (2016)

    Article  Google Scholar 

  28. S Sasaki, R Hatakeyama, T Hirata, W Oohara and N Sato Fusion and Plasma Phys. 22 2537 (1998)

    Google Scholar 

  29. H Ur-Rehman, S Mahmood and S Hussain Waves Random Complex 19 5049 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hasanbeigi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To express the dependency of the soliton characteristics on the actual and experimental plasma parameters, we do the reverse coordinate conversion by changing the normalized quantities to the actual plasma parameters. This is done in the following calculation by multiplying the non-dimensional quantities by their normalization factors. Therefore,

$$\lambda ^{\prime} = \sqrt {\frac{{\delta ^{2} \frac{{B_{0}^{2} }}{{4\pi n_{ + }^{0} m_{ - } }} + \delta \mu v_{{T_{ + } }}^{2} + \sigma \mu v_{{T_{ + } }}^{2} }}{{\left( {1 + \delta ^{2} \mu } \right)}}}$$
$${\text{ }}A^{\prime} = \frac{{\left[ {\left( {\delta \mu + 1} \right)\lambda ^{\prime2} - \delta \mu - \alpha \delta \mu - \alpha \sigma \mu + 3} \right]}}{{\left[ {\left( {\delta \mu + 1} \right)\lambda ^{\prime2} + 1} \right]}},{\text{ }}B^{\prime} = \frac{{\lambda ^{\prime} }}{{\left[ {\left( {\delta \mu + 1} \right)\lambda ^{\prime2} + 1} \right]}}$$
$$\phi _{m} ^{\prime } = 3u_{0} v_{{A_{ + } }} /A^{\prime},\space \omega ^{\prime} = \sqrt {4{\text{ }}B^{\prime}/u_{0} v_{{A_{ + } }} }$$

Here \(\lambda ^{\prime}\), \({\text{ }}A^{\prime}\), \(B^{\prime}\), \(\phi _{m} ^{\prime }\) and \(\omega ^{\prime}\) are dimensional quantities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, S., Hasanbeigi, A. & Sobhanian, S. Magnetoacoustic solitons in Alkali-fullerene plasmas. Indian J Phys 96, 1853–1859 (2022). https://doi.org/10.1007/s12648-021-02119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02119-9

Keywords

Navigation