Skip to main content

Advertisement

Log in

Two-channel cross-phase modulation based on the reversible storage of light in a cold atomic system

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We propose a five-level quasi-tripod type atomic system for realizing two-channel cross-phase modulation (XPM) based on the light-storage. Due to the existence of the double dark-state polaritons, both probe fields can be coherently mapped into and out of the cold atoms by switching off and on the coupling field adiabatically. The analytic results and the numerical simulations show that the application of an additional weak microwave field during the storage time can efficiently modify the atomic spin coherence, and a continuous and controllable phase shift can be imposed on the retrieved probe fields with negligible attenuation in the amplitude. The phase shift and the energy retrieving rate of the probe fields are neither influenced by the coupling field nor by the atomic optical density. Such a novel scheme can be easily extended to realize the XPM of multiple-probe fields and may find potential applications in multiple-channel classical and quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Q A Turchette, C J Hood, W Lange, H Mabuchi and H J Kimble Phys. Rev. Lett. 75 4710 (1995)

    Article  ADS  Google Scholar 

  2. S Rebić, D Vitali, C Ottaviani, P Tombesi, M Artoni, F Cataliotti and R Corbalán Phys. Rev. A. 70 032317 (2004)

    Article  ADS  Google Scholar 

  3. A Joshi and M Xiao Phys. Rev. A 72 062319 (2005)

    Article  ADS  Google Scholar 

  4. M D Lukin and A Imamoǧlu Phys. Rev. Lett. 84 1419 (2000)

    Article  ADS  Google Scholar 

  5. K Nemoto and W J Munro Phys. Rev. Lett. 93 250502 (2004)

    Article  ADS  Google Scholar 

  6. S D Barrett, P Kok, K Nemoto, R G Beausoleil, W J Munro and T P Spiller Phys. Rev. A. 71 060302(R) (2005)

    Article  ADS  Google Scholar 

  7. T H Qiu and M Xie Phys. Rev. A. 96 033844 (2017)

    Article  ADS  Google Scholar 

  8. T H Qiu, H Y Ma and L X Xia Opt. Express 26 017739 (2018)

    Article  Google Scholar 

  9. S E Harris Phys. Today 50 36 (1997)

    Article  Google Scholar 

  10. M D Lukin Rev. Mod. Phys. 75 457 (2003)

    Article  ADS  Google Scholar 

  11. M Fleischhauer, A Imamoǧlu and J P Marangos Rev. Mod. Phys. 77 633 (2005)

    Article  ADS  Google Scholar 

  12. H Schmidt and A Imamoǧlu Opt. Lett. 21 1936 (1996)

    Article  ADS  Google Scholar 

  13. H Kang and Y F Zhu Phys. Rev. Lett. 91 093601 (2003)

    Article  ADS  Google Scholar 

  14. Y F Chen, C Y Wang, S H Wang and I A Yu Phys. Rev. Lett. 96 043603 (2006)

    Article  ADS  Google Scholar 

  15. S E Harris and L V Hau Phys. Rev. Lett. 82 4611 (1999)

    Article  ADS  Google Scholar 

  16. D Petrosyan and G Kurizki Phys. Rev. A 65 033833 (2002)

    Article  ADS  Google Scholar 

  17. Z B Wang, K P Marzlin and B C Sanders Phys. Rev. Lett. 97 063901 (2006)

    Article  ADS  Google Scholar 

  18. B W Shiau, M C Wu, C C Lin and Y C Chen Phys. Rev. Lett. 106 193006 (2011)

    Article  ADS  Google Scholar 

  19. M Bajcsy, A S Zibrov and M D Lukin Nature (London) 426 638 (2003)

    Article  ADS  Google Scholar 

  20. Y H Chen, M J Lee, W Hung, Y C Chen, Y F Chen and I A Yu Phys. Rev. Lett. 108 173603 (2012)

    Article  ADS  Google Scholar 

  21. M Mücke, et al. Nat. (London) 465 755 (2010)

    Article  ADS  Google Scholar 

  22. I Friedler, D Petrosyan, M Fleischhauer and G Kurizki Phys. Rev. A 72 043803 (2005)

    Article  ADS  Google Scholar 

  23. S Baur, D Tiarks, G Rempe and S Dürr Phys. Rev. Lett. 112 073901 (2014)

    Article  ADS  Google Scholar 

  24. H Gorniaczyk, C Tresp, J Schmidt, H Fedder and S Hofferberth Phys. Rev. Lett. 113 053601 (2014)

    Article  ADS  Google Scholar 

  25. Z Y Liu, et al. Phys. Rev. Lett. 117 203601 (2016)

    Article  ADS  Google Scholar 

  26. M Fleischhauer and M D Lukin Phys. Rev. Lett. 84 5094 (2000)

    Article  ADS  Google Scholar 

  27. M Fleischhauer and M D Lukin Phys. Rev. A 65 022314 (2002)

    Article  ADS  Google Scholar 

  28. T H Qiu, H. Li, M Xie Phys. Rev. A 100 013844 (2019)

    Article  ADS  Google Scholar 

  29. T H Qiu, H. Li, M Xie, Q Liu and H Y Ma Opt. Express 27 027477 (2019)

    Article  Google Scholar 

  30. T H Qiu, H. Li, M Xie, Q Liu, H Y Ma and R Xu Opt. Express 28 019750 (2020)

    Article  Google Scholar 

  31. T H Qiu, H. Li, M Xie, H Y Ma Quantum Inf. Process. 19 52 (2020)

    Article  ADS  Google Scholar 

  32. A Mair, J Hager, D F Phillips, R L Walsworth and M D Lukin Phys. Rev. A 65 031802(R) (2002)

    Article  ADS  Google Scholar 

  33. H Gao, M Rosenberry and H Batelaan Phys. Rev. A 67 053807 (2003)

    Article  ADS  Google Scholar 

  34. B Albrecht, P Farrera, G Heinze, M Cristiani and H de Riedmatten Phys. Rev. Lett. 115 160501 (2015)

    Article  Google Scholar 

  35. J Rui, Y Jiang, S J Yang, B Zhao, X H Bao and J W Pan Phys. Rev. Lett. 115 133002 (2015)

    Article  ADS  Google Scholar 

  36. A Eilam, A D Wilson-Gordon and H Friedmann Opt. Lett. 34 1834 (2009)

    Article  ADS  Google Scholar 

  37. L Karpa, F Vewinger and M Weitz Phys. Rev. Lett. 101 170406 (2008)

    Article  ADS  Google Scholar 

  38. J Nunn, K Reim, K C Lee, V O Lorenz, B J Sussman, I A Walmsley and D Jaksch Phys. Rev. Lett. 101 260502 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Wang, S. & Li, L. Two-channel cross-phase modulation based on the reversible storage of light in a cold atomic system. Indian J Phys 96, 1643–1647 (2022). https://doi.org/10.1007/s12648-021-02117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02117-x

Keywords

Navigation