Skip to main content
Log in

Gravitational energy in Van Stockum space-time

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to illustrate the problem of energy and momentum distributions of Van Stockum space-time within the framework of two different theories of gravity, general relativity and teleparallel gravity. We have shown that for all homogeneous space-times with metric components \(g_{\mu \nu }\) being functions of time variable, t, alone and independent of space variables the total gravitational energy for any finite volume is identically zero. By working with general relativity, we have calculated the energy-momentum density for Van Stockum space-time using double index complexes and in the framework teleparallel gravity, we used the energy-momentum complexes of Einstein, Bergmann–Thomson and Landau–Lifshitz. In our analysis, we sustained that general relativity and teleparallel gravity are equivalent theories of space-time under consideration. For space-time under consideration, we have shown that different complexes of energy-momentum density do not provide the same results neither in general relativity nor in teleparallel gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \({\tilde{\Gamma }}^{\rho }_{ \mu \nu } =\frac{1}{2}g^{\rho \sigma }(g_{\mu \sigma ,\nu }+g_{\nu \sigma ,\mu } -g_{\mu \nu ,\sigma })\)

  2. Finding energy-momentum density using Møller prescription in the theory of teleparallel gravity will be postponed to another article.

References

  1. K Hayashi and T Shirafuji, Phys. Rev. D 19 3524 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  2. A Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 778 (1915)

  3. R C Tolman, Relativity, Thermodynamics and Cosmology, (Oxford University Press, Oxford), p. 227 (1934)

  4. A Papapetrou, Proc. R. Ir. Acad. A52 11 (1948)

    MathSciNet  Google Scholar 

  5. L D Landau and E M Lifshitz, The Classical Theory of Fields, (Addison-Wesley Press, Reading, MA) p. 317 (1951)

  6. P G Bergmann and R Thompson, Phys. Rev. 89 400 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  7. S Weinberg, Gravitation and Cosmology: Principles and Applications of General Theory of Relativity ( Wiley, New York) 165 (1972)

  8. C Møller, Ann. Phys. (NY) 4 347 (1958)

    Article  ADS  Google Scholar 

  9. K S Virbhadra, Phys. Rev D 411086 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  10. K S Virbhadra, Phys. Rev D 42 1066 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  11. J M Aguirregabiria, A Chamorro and K S Virbhadra, Gen. Relativ. Gravit. 28 1393 (1996)

    Article  ADS  Google Scholar 

  12. S S Xulu, Astrophys.Space Sci. 283 23 (2003)

    Article  ADS  Google Scholar 

  13. E C Vagenas, Int. J. Mod. Phys. A18 5781 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. T Multamäki1, A Putaja1, I Vilja1 and E C Vagenas, Class. Quant. Grav. 25 075017 (2008)

  15. E C Vagenas, Int. J. Mod. Phys. D 14 573 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. E C Vagenas, Mod. Phys. Lett. A 21 1947 (2006)

    Article  ADS  Google Scholar 

  17. I Radinschi, Mod. Phys. Lett. A 16 673 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. I Radinschi, Mod. Phys. Lett. A 15 2171 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. I Radinschi, Chin. J. Phys. 39 393 (2001)

    Google Scholar 

  20. I Radinski and Th Grammenos, Int. J. Mod. Phys. A 21 2853 (2006)

    Article  ADS  Google Scholar 

  21. I. Radinschi, F Rahaman, A Ghosh, Int. J. Theor. Phys., 49 943 (2010)

    Article  Google Scholar 

  22. R M Gad, Mod. Phys. Letters A 19 1847 (2004)

    Article  ADS  Google Scholar 

  23. R M Gad, Astrophys. space Sci., 293 453 (2004)

    Article  ADS  Google Scholar 

  24. R M Gad, Astrophys. space Sci., 295 451 (2005)

    Article  ADS  Google Scholar 

  25. R M Gad, Astrophys. space Sci., 295 459 (2005)

    Article  ADS  Google Scholar 

  26. R M Gad, Gen. Relat. Gravit., 38 417 (2006)

    Article  ADS  Google Scholar 

  27. R M Gad, Astrophys. space Sci., 302 141 (2006)

    Article  ADS  Google Scholar 

  28. R M Gad, Nuovo Cimento B 121 161 (2006)

    ADS  Google Scholar 

  29. R M Gad, A Fouad, Astrophys. Space Sci., 310 135 (2007)

    Article  ADS  Google Scholar 

  30. G Borgqvist, Class. Quant. Gravit. 9 1917 (1992)

    Article  ADS  Google Scholar 

  31. C Møller, Tetrad fields and conservation laws in general relativity“, in Proc. International School of Physics (Academic Press, London), Enrico Fermi” Ed. C Møller, (1962)

  32. R M Gad and M F Mourad, Astrophys Space Sci. 314 341 (2008)

    Article  ADS  Google Scholar 

  33. R M Gad, Mod. Phys. Letters A 27 1250099 (2012)

    Article  ADS  Google Scholar 

  34. R M Gad, Astrophys Space Sci. 346 553 (2013)

    Article  ADS  Google Scholar 

  35. R M Gad, Int. J. Theor. Phys. 53 53 (2014)

    Article  Google Scholar 

  36. J G Pereira, T Vargas and C M Zhang, Class. Quant. Grav. 18 833 (2001)

    Article  ADS  Google Scholar 

  37. C M Zhang, Commun. Theor. Phys., 44 279 (2005)

    Article  ADS  Google Scholar 

  38. C M Zhang and A Beesham, Gen. Relativ. Grav., 34 679 (2002)

    Article  ADS  Google Scholar 

  39. J Audretsch, Phys. Rev. D 24 1470 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  40. Y N Obukhov and T Vargas, Phys. Lett. A 327 365 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  41. P B Yasskin and W R Stoeger, Phys. Rev. D 21 2081 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  42. F W Hehl and Y N Obukhov, Foundations of Classical Electrodynamics (Birkhäuser), Charge, Flux and Metric (2003)

    Book  MATH  Google Scholar 

  43. F W Hehl, Phys. Lett. A 36 225 (1971)

    Article  ADS  Google Scholar 

  44. R Aldrovandi and J G Pereira, An Introduction to Geometrical Physics, Singapore, World Scientific, (1995)

    Book  MATH  Google Scholar 

  45. V C De Andrade and J G Pereira, Gen. Rel. Grav. 30 263 (1997)

    Article  Google Scholar 

  46. V C De Andrade and J G Pereira, Phys. Rev. D 56 4689 (1998)

    Article  Google Scholar 

  47. I Ciufolini and J A Wheeler, Gravitation and Inertia, Princenton University Press, Princeton, NJ (1995)

    Book  MATH  Google Scholar 

  48. C Cattaneo, Ann. Inst. Henri Poincare IV 1 (1966)

  49. W J Van Stockum, Proc. R. Soc., Edinb. 57 135 (1937)

  50. R T Hammond, Rep. Prog. Phys. 65 599 (2002)

    Article  ADS  Google Scholar 

  51. R Weitzenböck, Invariantentheorie Noordhoff, Gronningen (1923)

  52. R Aldrovandi and J G Pereira , An In troduction to Geometrical Physics, Singapore, World Scientific, (1995)

    Book  MATH  Google Scholar 

  53. V C De Andrade and J G Pereira, Phys. Rev. D 56 4689 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  54. V C De Andrade, L C T Guillen and J G Pereira, Phys. Rev. Lett. 84 4533 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  55. F W Hehl and W T Ni, Phys. Rev. D 42 2045 (1990)

    Article  ADS  Google Scholar 

  56. J Nitsch and F W Hehl, Phys. Lett. B 90 98 (1980)

    Article  ADS  Google Scholar 

  57. C Møller, The Theory of Relativity, (Clarendon, Oxford (1952))

    MATH  Google Scholar 

  58. A S Alofi and R M Gad, arXiv preprint arXiv:1912.06653 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragab M. Gad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gad, R.M., Alharbi, H.A. Gravitational energy in Van Stockum space-time. Indian J Phys 96, 1591–1597 (2022). https://doi.org/10.1007/s12648-021-02085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02085-2

Keywords

Navigation