Skip to main content

Advertisement

Log in

The replacement reflection of a transition metal 3d3 by 3d7 on 4a site in Mn2PtZ compounds: FP-LAPW approach

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We perform a first-principles calculation to understand the effect of the additional valence electron of the transition atom in Wyckoff position 4 a, on the electronic structure, magnetic and structural stability of the full Heusler \({\mathrm{Mn}}_{2}\mathrm{PtZ}(\mathrm{Z}=\mathrm{V and Co})\) compound. L21, Xa and tetragonal structures are considered to verify the most stable phase. Within the framework of the plan \({\mathrm{Mn}}_{2}\mathrm{PtZ}(\mathrm{Z}=\mathrm{V and Co})\) favored the ferromagnetic configuration in the L21 structure. The results show that the 63% and 91% spin polarization at the Fermi level for \({\mathrm{Mn}}_{2}\mathrm{PtV}\) and \({\mathrm{Mn}}_{2}\mathrm{PtCo}\), respectively. The most contribution of the magnetic moment is due to the Mn atom, the total magnetic moments equal to \({4.87\upmu }_{\mathrm{B}}\) and \({9.012\upmu }_{\mathrm{B}}\) have been reported. To prove the half metallicity of our compound, we used the GGA + U approach. Within the framework of this approach, the value gap in the minority spin band is 0.755 eV, more, the magnetic moment satisfying the Slater-Pauling rule for the \({\mathrm{Mn}}_{2}\mathrm{PtV}\) compound. In addition, we give the two values of the curie temperatures for the two cubic structural phases. Finally, both full Heusler \({\mathrm{Mn}}_{2}\mathrm{PtV}\) and \({\mathrm{Mn}}_{2}\mathrm{PtCo}\) are a promising candidate for the use of future devices as spin-FETs and nonvolatile magnetic memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S Datta and B Das Appl. Phys. Lett. 56 665 (1990)

    Article  ADS  Google Scholar 

  2. K A Kilian and R H Victora J. Appl. Phys. 87 7064 (2000)

    Article  ADS  Google Scholar 

  3. C T Tanaka J Nowak and J S Moodera J. Appl. Phys. 86 6239 (1999)

    Article  ADS  Google Scholar 

  4. J A Caballero et al. J. Vac. Sci. Technol. A16 1801 (1998)

    Article  ADS  Google Scholar 

  5. C Hordequin J P Nozieres and J Pierre J. Magn. Magn. Mater. 183 225 (1998)

    Article  ADS  Google Scholar 

  6. S Chadov, T Graf, K Chadova, X Dai, F Casper and G H Fecher and C Felser Phys Rev. Lett. 107 047202 (2011)

    Article  ADS  Google Scholar 

  7. European Commission Report on critical raw materials for the EU – Report of the Ad hoc Working Group on defining critical raw materials. (Brussels, Belgium: European Commision) (2014)

    Google Scholar 

  8. C D Stanciu, F Hansteen, A V Kimel, A Kirilyuk, A Tsukamoto and A Itoh and Th Rasing Phys Rev. Lett. 99 047601 (2007)

    Article  ADS  Google Scholar 

  9. S Chadov and J Kiss and C Felser Adv Funct. Mater. 23 832 (2013)

    Article  Google Scholar 

  10. S Ouardi, G H Fecher and C Felser and J Kubler Phys Rev. Lett 110 100401 (2013)

    Article  ADS  Google Scholar 

  11. J Winterlik et al. Adv. Mater. 24 6283 (2012)

    Article  Google Scholar 

  12. C J Palmstrøm. 62 371 (2016)

  13. E Michelle. Jamer, Phd thesis (The Faculty of the College of Science of Northeastern University) (2015)

  14. S Sanvito and C Oses JXue, ATiwari, M Zic, TArcher, PTozman, M Venkatesan, M Coey S Curtarolo Sci. Adv. 3 e1602241 (2017)

    ADS  Google Scholar 

  15. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2k, An Augmented Plane Wave C Local Orbitals Program for Calculating Crystal Properties ed K Schwarz (Wien: Technical Universitaet Wien) (2001)

  16. P Blaha, K Schwarz, P Sorantin and S B Tricky Comput. Phys. Commun 59 399 (1990)

    Article  ADS  Google Scholar 

  17. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. (Austria: Techn. Universitat Wien) (2001)

    Google Scholar 

  18. K Schwarz, P Blaha and G K H Madsen Comput. Phys. Commun. 147 71 (2002)

    Article  ADS  Google Scholar 

  19. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  20. F Heusler, W Starck and E Haupt Verh. DPG 5 220 (1903)

    Google Scholar 

  21. F Heusler Verh. DPG 5 219 (1903)

    Google Scholar 

  22. O Heusler Kristallstruktur und Ferromagnetismus der Mangan-Aluminium-Kupferlegierungen) (German Ann. Phys 411 155–201 (1934)

    Article  Google Scholar 

  23. A J Bradley and J W Rodgers Proc. R. Soc. A 144 340 (1934)

    ADS  Google Scholar 

  24. T Graf, S Parkin and C Felser IEEE Trans. Mag. 47 367 (2011)

    Article  ADS  Google Scholar 

  25. L Wollmann and S Chadov J Kübler and C Felser Phys Rev. B 92 064417 (2015)

    Article  Google Scholar 

  26. Jianhua Ma et al Physical Review B 95 2 024411 (2017)

    Article  ADS  Google Scholar 

  27. The Open Quantum Materials Database, http://oqmd.org/analysis/gclp

  28. J Ma, J He, D Mazumdar, K Munira, S Keshavarz and T Lovorn C Wolverton A W Ghosh, and W H Butler Physical Review B 98 094410 (2018)

    Article  ADS  Google Scholar 

  29. A I Liechtenstein and M I Katsnelson P V Antropov and A V Gubanov J Magn Magn. Materials 67 65 (1987)

    Article  ADS  Google Scholar 

  30. K Momma et F izumi J. Appl. Crystallogr. 44 1272 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djillali Bensaid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamli, M., Bensaid, D., Bouzouira, N. et al. The replacement reflection of a transition metal 3d3 by 3d7 on 4a site in Mn2PtZ compounds: FP-LAPW approach. Indian J Phys 96, 1663–1672 (2022). https://doi.org/10.1007/s12648-021-02095-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02095-0

Keywords

Navigation