Skip to main content
Log in

Loewner chains with quasiconformal extensions: an approximation approach

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

A new approach in Loewner Theory proposed by Bracci, Contreras, Díaz-Madrigal and Gumenyuk provides a unified treatment of the radial and the chordal versions of the Loewner equations. In this framework, a generalized Loewner chain satisfies the differential equation

$${{\partial {f_t}\left(z \right)} \over {\partial t}} = \left({z - \tau \left(t \right)} \right)\left({1 - \overline {\tau \left(t \right)} z} \right)p\left({z,\;t} \right){{\partial {f_t}\left(z \right)} \over {\partial z}},$$

where τ: [0, ∞) → \(\overline{\mathbb{D}}\) is measurable and p is called a Herglotz function. In this paper, we will show that if there exists a k ⩽ [0, 1) such that p satisfies

$$\left| {p\left({z,\;t} \right) - 1} \right| \le k\left| {p\left({z,\;t} \right) + 1} \right|$$

for all z\(\mathbb{D}\) and almost all t ⩽ [0, ∞), then, for all t ⩽ [0, ∞), ft has a k-quasiconformal extension to the whole Riemann sphere. The radial case (τ = 0) and the chordal case (τ = 1) have been proven by Becker [J. Reine Angew. Math., vol. 255 (1972), 23–43] and Gumenyuk and the author [Math. Z., vol. 285 (2017), 1063–1089]. In our theorem, no superfluous assumption is imposed on τ ⩽ \(\overline{\mathbb{D}}\). As a key foundation of the proof is an approximation method using a continuous dependence of evolution families and Loewner chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, Lectures on Quasiconformal Mappings, American Mathematical Society, Providence, RI, 2006.

    Book  Google Scholar 

  2. L. V. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc. 13 (1962), 975–978.

    Article  MathSciNet  Google Scholar 

  3. F. Bracci, M. D. Contreras and S. Díaz-Madrigal, Evolution families and the Loewner equation I. The unit disc, J. Reine Angew. Math. 672 (2012), 1–37.

    MathSciNet  MATH  Google Scholar 

  4. J. Becker, Löwnersche differentialgleichung und quasikonform fortsetzbare schlichte funktionen, J. Reine Angew. Math. 255 (1972), 23–43.

    MathSciNet  MATH  Google Scholar 

  5. J. Becker, Conformal mappings with quasiconformal extensions, in Aspects of Contemporary Complex Analysis, Academic Press, London, 1980, pp. 37–77.

    Google Scholar 

  6. L. Bers, Correction to “Spaces of Riemann surfaces as bounded domains”, Bull. Amer. Math. Soc. 67 (1961), 465–466.

    Article  MathSciNet  Google Scholar 

  7. Th. Betker, Löwner chains and quasiconformal extensions, Complex Variables Theory Appl. 20 (1992), 107–111.

    Article  MathSciNet  Google Scholar 

  8. E. Berkson and H. Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101–115.

    Article  MathSciNet  Google Scholar 

  9. M. D. Contreras, S. Díaz-Madrigal and P. Gumenyuk, Loewner chains in the unit disk, Rev. Mat. Iberoamericana 26 (2010), 975–1012.

    Article  MathSciNet  Google Scholar 

  10. M. D. Contreras, S. Díaz-Madrigal and P. Gumenyuk, Local duality in Loewner equations, J. Nonlinear Convex Anal. 15 (2014), 269–297.

    MathSciNet  MATH  Google Scholar 

  11. L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137–152.

    Article  MathSciNet  Google Scholar 

  12. S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, Hauppauge, NY, 2003.

    MATH  Google Scholar 

  13. M. Elin and D. Shoikhet, Linearization Models for Complex Dynamical Systems, Birkhäuser, Basel, 2010.

    MATH  Google Scholar 

  14. P. Gumenyuk and I. Hotta, Chordal Loewner chains with quasiconformal extensions, Math. Z. 285 (2017), 1063–1089.

    Article  MathSciNet  Google Scholar 

  15. P. Gumenyuk and I. Prause, Quasiconformal extensions, Loewner chains, and the λ-lemma, Anal. Math. Phys. 8 (2018), 621–635.

    Article  MathSciNet  Google Scholar 

  16. I. Hotta, Explicit quasiconformal extensions and Löwner chains, Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), 108–111.

    Article  MathSciNet  Google Scholar 

  17. I. Hotta, Lowner chains with complex leading coefficient, Monatsh. Math. 163 (2011), 315–325.

    Article  MathSciNet  Google Scholar 

  18. J. H. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Vol. 1, Matrix Editions, Ithaca, NY, 2006.

    Google Scholar 

  19. Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller Spaces, Springer, Tokyo, 1992.

    Book  Google Scholar 

  20. F. Johansson Viklund, A. Sola and A. Turner, Scaling limits of anisotropic Hastings-Levitov clusters, Ann. Inst. Henri Poincaré Probab. Stat 48 (2012), 235–257.

    Article  MathSciNet  Google Scholar 

  21. P. P. Kufarev, On one-parameter families of analytic functions, Rec. Math. [Mat. Sbornik] N.S. 13(55) (1943), 87–118.

    MathSciNet  Google Scholar 

  22. G. F. Lawler, Conformally Invariant Processes in the Plane, American Mathematical Society, Providence, RI, 2005.

    MATH  Google Scholar 

  23. O. Lehto, Univalent Functions and Teichmüller Spaces, Springer, New York, 1987.

    Book  Google Scholar 

  24. J. Lind, D. E. Marshall and S. Rohde, Collisions and spirals of Loewner traces, Duke Math. J. 154 (2010), 527–573.

    Article  MathSciNet  Google Scholar 

  25. K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), 103–121.

    Article  MathSciNet  Google Scholar 

  26. O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York, 1973.

    Book  Google Scholar 

  27. Ch. Pommerenke, Über die Subordination analytischer Funktionen, J. Reine Angew. Math. 218 (1965), 159–173.

    MathSciNet  MATH  Google Scholar 

  28. Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.

    MATH  Google Scholar 

  29. O. Roth, Control Theory in ℋ(\(\mathbb{D}\)), Ph.D. thesis, Universität Würzburg, Würzburg, 1998.

    Google Scholar 

  30. O. Roth and S. Schleißinger, The Schramm-Loewner equation for multiple slits, J. Anal. Math. 131 (2017), 73–99.

    Article  MathSciNet  Google Scholar 

  31. O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221–288.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikkei Hotta.

Additional information

This work was supported by JSPS KAKENHI Grant Numbers 17K14205.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hotta, I. Loewner chains with quasiconformal extensions: an approximation approach. JAMA 143, 123–149 (2021). https://doi.org/10.1007/s11854-021-0149-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-021-0149-4

Navigation