Skip to main content
Log in

Relationships between multiple zeta values of depths 2 and 3 and period polynomials

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Some combinatorial aspects of relations between multiple zeta values of depths 2 and 3 and period polynomials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Baumard, L. Schneps, Period polynomial relations between double zeta values, Ramanujan Journal 32 (2013), 83–100.

    Article  MathSciNet  Google Scholar 

  2. D. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Physics Letters. B 393 (1997), 403–412.

    Article  MathSciNet  Google Scholar 

  3. F. Brown, On the decomposition of motivic multiple zeta values, in Galois-Teichmullër Theory and Arithmetic Geometry, Advanced Studies in Pure Mathematics, Vol. 63, Mathematical Society of Japan, Tokyo, 2012, pp. 31–58.

    Chapter  Google Scholar 

  4. F. Brown, Mixed Tate motives over ℤ, Annals of Mathematics 175 (2012), 949–976.

    Article  MathSciNet  Google Scholar 

  5. F. Brown, Motivic periods and1 {0, 1, ∞}, in Proceedings of the International Congress of Mathematicians-Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 295–318.

    Google Scholar 

  6. F. Brown, Zeta elements in depth 3 and the fundamental Lie algebra of a punctured elliptic curve, Forum of Mathematics. Sigma 5 (2017), 1–56.

    Article  Google Scholar 

  7. F. Brown, Depth-graded motivic multiple zeta values, https://arxiv.org/abs/1301.3053.

  8. S. Carr, H. Gangl and L. Schneps, On the Broadhurst-Kreimer generating series for multiple zeta values, in Feynman Amplitudes, Periods and Motives, Contemporary Mathematics, Vol. 648, American Mathematical Society, Providence, RI, 2015, pp. 57–77.

    Chapter  Google Scholar 

  9. J. Ecalle, ARI/GARI, la dimorphie et l’arithmétique des multizêtas: un premier bilan, Journal de Théorie des Nombres Bordeaux 15 (2003), 411–478.

    Article  MathSciNet  Google Scholar 

  10. B. Enriquez and P. Lochak, Homology of depth-graded motivic Lie algebras and koszulity, Journal de Théorie des Nombres Bordeaux 28 (2016), 829–850.

    Article  MathSciNet  Google Scholar 

  11. H. Gangl, M. Kaneko and D. Zagier, Double zeta values and modular forms, in Automorphic Forms and Zeta Functions, World Scientific, Hackensack, NJ, 2006, pp. 71–106.

    Chapter  Google Scholar 

  12. C. Glanois, Motivic unipotent fundamental groupoid of \({\mathbb{G}_m}\backslash {\mu _N}\) for N = 2, 3, 4, 6, 8 and Galois descents, Journal of Number Theory 160 (2016), 334–384

    Article  MathSciNet  Google Scholar 

  13. A. B. Goncharov, Periods and mixed motives, https://arxiv.org/abs/math/0202154.

  14. A. B. Goncharov, The dihedral Lie algebras and Galois symmetries of \(\pi _1^{\left( l \right)}\left(\mathbb{P}{{^1} - \left( {\left\{ {0,\infty } \right\} \cup {\mu _N}} \right)} \right)\), Duke Mathematical Journal 110 (2001), 397–487.

    Article  MathSciNet  Google Scholar 

  15. A. B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Mathematical Journal 128 (2005), 209–284.

    Article  MathSciNet  Google Scholar 

  16. M. E. Hoffman, The algebra of multiple harmonic series, Journal of of Algebra 194 (1997), 477–495.

    Article  MathSciNet  Google Scholar 

  17. K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compositio Mathematica 142 (2006), 307–338.

    Article  MathSciNet  Google Scholar 

  18. M. Kaneko and K. Tasaka, Double zeta values, double Eisenstein series, and modular forms of level 2, Mathematische Annalen 357 (2013), 1091–1118.

    Article  MathSciNet  Google Scholar 

  19. W. Kohnen and D. Zagier, Modular forms with rational periods, in Modular Forms (Durham, 1983), Ellis Horwood Series in Mathematics and its Applications: Statistics and Operational Research, Horwood, Chichester, 1984, pp. 197–249.

    Google Scholar 

  20. D. Ma, Period polynomial relations between formal double zeta values of odd weight, Mathematische Annalen 365 (2016), 345–362.

    Article  MathSciNet  Google Scholar 

  21. D. Ma, Period polynomial relations of binomial coefficients and binomial realization of formal double zeta space, International Journal of Number Theory 13 (2017), 761–774.

    Article  MathSciNet  Google Scholar 

  22. D. Ma, Inverse ofa matrix related to double zeta values of odd weight, Journal of Number Theory 166 (2016), 166–180.

    Article  MathSciNet  Google Scholar 

  23. D. Ma, Connections between double zeta values relative to μn, Hecke operators Tn, and newforms of level Γ0(N) for N = 2, 3, https://arxiv.org/abs/1511.06102.

  24. D. Ma, Relations among multiple zeta values and modular forms of low level, Ph.D. Thesis.

  25. E. Panzer, The parity theorem for multiple polylogarithms, Journal of Number Theory 172 (2017), 93–113.

    Article  MathSciNet  Google Scholar 

  26. K. Tasaka, On linear relations among totally odd multiple zeta values related to period polynomials, Kyushu Journal of Mathematics 70 (2016), 1–28.

    Article  MathSciNet  Google Scholar 

  27. H. Tsumura, Combinatorial relations for Euler-Zagier sums, Acta Arithmetica 111 (2004), 27–42.

    Article  MathSciNet  Google Scholar 

  28. S. Yamamoto, Interpolation of multiple zeta and zeta-star values, Journal of Algebra 385 (2013), 102–114.

    Article  MathSciNet  Google Scholar 

  29. D. Zagier, Periods of modular forms and Jacobi theta functions, Inventiones Mathematicae 104 (1991), no. 3, 449–465.

    Article  MathSciNet  Google Scholar 

  30. D. Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics (Paris, 1992), Vol. II, Progress in Mathematics, Vol. 120, Birkhäuser, Basel, 1994, 497–512.

    Chapter  Google Scholar 

  31. D. Zagier, Periods of modular forms, traces of Hecke operators, and multiple zeta values, Sūrikaisekikenkyūsho Kôkyûroku 843 (1993), 162–170.

    MathSciNet  Google Scholar 

  32. D. Zagier, Evaluation of the multiple zeta values ζ(2, …, 2, 3, 2,…, 2), Annals of Mathematics 175 (2012), 977–1000.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Francis Brown for initial advice and useful comments. The second author wishes to express his thanks to Herbert Gangl for drawing his attention to Yamamoto’s \({1 \over 2}\)-interpolated multiple zeta values. The second author also thanks Max Planck Institute for Mathematics, where the paper was written, for the invitation and hospitality. This work is partially supported by Japan Society for the Promotion of Science, Grant-in-Aid for JSPS Fellows (No. 16H07115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Tasaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Tasaka, K. Relationships between multiple zeta values of depths 2 and 3 and period polynomials. Isr. J. Math. 242, 359–400 (2021). https://doi.org/10.1007/s11856-021-2139-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2139-8

Navigation