Skip to main content
Log in

Non-escaping points of Zorich maps

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We extend results about the dimension of the radial Julia set of certain exponential functions to quasiregular Zorich maps in higher dimensions. Our results improve on previous estimates of the dimension also in the special case of exponential functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Barański, B. Karpińska and A. Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts, International Mathematics Research Notices 2009 (2009), 615–624.

    MathSciNet  MATH  Google Scholar 

  2. W. Bergweiler, Iteration of meromorphic functions, Bulletin of the American Mathematical Society 29 (1993), 151–188.

    Article  MathSciNet  Google Scholar 

  3. W. Bergweiler, Karpińska’s paradox in dimension 3, Duke Mathematical Journal 154 (2010), 599–630.

    Article  MathSciNet  Google Scholar 

  4. P. Comdühr, On the differentiability of hairs for Zorich maps, Ergodic Theory and Dynamical Systems 39 (2019), 1824–1842.

    Article  MathSciNet  Google Scholar 

  5. R. L. Devaney and M. Krych, Dynamics of exp(z), Ergodic Theory and Dynamical Systems 4 (1984), 35–52.

    Article  MathSciNet  Google Scholar 

  6. A. È. Erëmenko, On the iteration of entire functions, in Dynamical Systems and Ergodic Theory (Warsaw, 1986), Banach Center Publications, Vol. 23, Polish Scientific Publishers, Warsaw, 1989, pp. 339–345.

    Google Scholar 

  7. K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 1990.

    MATH  Google Scholar 

  8. G. Havard, M. Urbański and M. Zinsmeister, Variations of Hausdorff dimension in the exponential family, Annales Academiæ Scientiarum Fennicæ. Mathematica 35 (2010), 351–378.

    Article  MathSciNet  Google Scholar 

  9. T. Iwaniec and G. Martin, Geometric Function Theory and Non-linear Analysis, Oxford Mathematical Monographs, Oxford University Press, New York, 2001.

    MATH  Google Scholar 

  10. B. Karpińska, Area and Hausdorff dimension of the set of accessible points of the Julia sets of λez and λ sin z, Fundamenta Mathematicae 159 (1999), 269–287.

    Article  MathSciNet  Google Scholar 

  11. B. Karpińska, Hausdorff dimension of the hairs without endpoints for λ exp z, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 328 (1999), 1039–1044.

    MathSciNet  MATH  Google Scholar 

  12. O. Martio and U. Srebro, Periodic quasimeromorphic mappings in Rn, Journal d’Analyse Mathématique 28 (1975), 20–40.

    Article  Google Scholar 

  13. C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Transactions of the American Mathematical Society 300 (1987), 329–342.

    Article  MathSciNet  Google Scholar 

  14. L. Rempe, Hyperbolic dimension and radial Julia sets of transcendental functions, Proceedings of the American Mathematical Society 137 (2009), 1411–1420.

    Article  MathSciNet  Google Scholar 

  15. D. Schleicher, Dynamics of entire functions, in Holomorphic Dynamical Systems, Lecture Notes in Mathematics, Vol. 1998, Springer, Berlin, 2010, pp. 295–339.

    Book  Google Scholar 

  16. M. Urbański and A. Zdunik, The finer geometry and dynamics of the hyperbolic exponential family, Michigan Mathematical Journal 51 (2003), 227–250.

    Article  MathSciNet  Google Scholar 

  17. M. Urbański and A. Zdunik, Real analyticity of Hausdorff dimension of finer Julia sets of exponential family, Ergodic Theory and Dynamical Systems 24 (2004), 279–315.

    Article  MathSciNet  Google Scholar 

  18. M. Urbański and A. Zdunik, The parabolic map \({f_{1/e}}\left( z \right) = {1 \over e}{e^z}\), Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae 15 (2004), 419–433.

    MathSciNet  MATH  Google Scholar 

  19. V. A. Zorich, A theorem of M. A. Lavrent’ev on quasiconformal space maps, Matematicheskiĭ Sbornik 74 (1967), 417–433; English translation: Mathematics of the USSR. Sbornik 3 (1967), 389–403.

    Google Scholar 

Download references

Acknowledgments

This research was initiated while the second author was visiting the University of Kiel and it was completed while the first author was visiting the Shanghai Center of Mathematical Sciences. Both authors thank the respective institutions for the hospitality.

We also thank the referee for a large number of helpful remarks, in particular for suggesting an improvement of the lower bound in Theorem 1.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Bergweiler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergweiler, W., Ding, J. Non-escaping points of Zorich maps. Isr. J. Math. 243, 27–43 (2021). https://doi.org/10.1007/s11856-021-2140-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2140-2

Navigation