Skip to main content

Advertisement

Log in

Carbon nanotube functional group-dependent compatibilization of polyamide 6 and poly(methyl methacrylate) nanocomposites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Nanocomposites of polyamide 6 (PA6)–poly(methyl methacrylate) (PMMA)–functionalized single-wall carbon nanotubes (f-SWCNTs) with hydroxyl (SWCNTOH) and carboxylic acid (SWCNTCOOH) in weight ratios of 79.5–19.5–1, 49.5–49.5–1, and 19.5–79.5–1 were fabricated and investigated in terms of morphology, mechanical and XRD studies. Blends of 80–20, 50–50, and 20–80 weight ratios of PA6–PMMA have functioned as references. The scanning electron microscopy images of nanocomposites showed a relatively uniform dispersion of PMMA domains as co-continuous phase morphology in the continuous phase of PA6 compared to their respective blends. The f-SWCNTs acted as functional group-dependent compatibilizers for the PA6–PMMA blend system. Compatibilization of PA6-PMMA blends was higher in the presence of functionalized SWCNTs. XRD analysis indicated that the αI and αII phases of the PA6 were dependent on the weight ratio of the PA6 and PMMA and the nature of the f-SWCNTs. The PMMA-rich blends and nanocomposites exhibited the rich αI phase. The melt strength of the nanocomposites was higher compared to that of the PA6–PMMA blends. All the nanocomposites exhibited higher tensile strength than their corresponding blends. Tensile modulus increased with increasing weight percent of PMMA in blends (from 810 to 1135 MPa) and in nanocomposites (from 854 to 1298 MPa). PA6–PMMA–SWCNTOH19.5–79.5–1 nanocomposites exhibited higher tensile modulus (1298 MPa) compared to all the blends and PA6–PMMA–SWCNTCOOH nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  2. Park M, Yoon S, Park J, Park NH, Ju SY (2020) Flavin mononucleotide-mediated formation of highly electrically conductive hierarchical monoclinic multiwalled carbon nanotube-polyamide 6 nanocomposites. ACS Nano 14:10655–10665

    Article  CAS  PubMed  Google Scholar 

  3. Al-Osaimi J, Al-Hosiny N, Abdallah S, Badawi A (2014) Characterization of optical, thermal and electrical properties of SWCNTs/PMMA nanocomposite films. Iran Polym J 23:437–443

    Article  CAS  Google Scholar 

  4. Prashantha K, Schmitt H, Lacrampe MF, Krawczak P (2011) Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites. Compos Sci Technol 71:1859–1866

    Article  CAS  Google Scholar 

  5. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  CAS  Google Scholar 

  6. Ali NA, Hussein SI, Asafa TB, Abd-Elnaiem AM (2020) Mechanical properties and electrical conductivity of poly(methyl methacrylate)/multi-walled carbon nanotubes composites. Iran J Sci Technol Trans Sci 44:1567–1576

    Article  Google Scholar 

  7. Ghanta TS, Aparna S, Verma N, Purnima D (2020) Review on nano- and microfiller-based polyamide 6 hybrid composite: effect on mechanical properties and morphology. Polym Eng Sci 60:1717–1759

    Article  CAS  Google Scholar 

  8. Potschke P, Bhattacharyya AR, Janke A (2004) Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. Eur Polym J 40:137–148

    Article  CAS  Google Scholar 

  9. Sathyanarayana S, Olowojoba G, Weiss P, Caglar B, Pataki B, Mikonsaari I, Hubner C, Henning F (2013) Compounding of MWCNTs with PS in a twin-screw extruder with varying process parameters: morphology, interfacial behavior, thermal stability, rheology, and volume resistivity. Macromol Mater Eng 298:89–105

    Article  CAS  Google Scholar 

  10. Saeed K, Park SY (2011) Multiwalled-carbon nanotubes/poly(butylene terephthalate) nanofibres: morphological, mechanical and thermal properties. Iran Polym J 20:795–801

    CAS  Google Scholar 

  11. Lau KT (2003) Interfacial bonding characteristics of nanotube/polymer composites. Chem Phys Lett 370:399–405

    Article  CAS  Google Scholar 

  12. Qian D, Liu WK, Ruoff RS (2003) Load transfer mechanism in carbon nanotube ropes. Compos Sci Technol 63:1561–1569

    Article  CAS  Google Scholar 

  13. Barrau S, Demont P, Perez E, Peigney A, Laurent C, Lacabanne C (2003) Effect of palmitic acid on the electrical conductivity of carbon nanotubes-epoxy resin composites. Macromolecules 36:9678–9680

    Article  CAS  Google Scholar 

  14. Xia H, Wang Q, Qiu G (2003) Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem Mater 15:3879–3886

    Article  CAS  Google Scholar 

  15. Liu T, Phang IY, Shen L, Chow SY, Zhang WD (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222

    Article  CAS  Google Scholar 

  16. Velasco C, Martinez SAL, Fisher HFT, Ruoff R, Castano VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15:4470–4475

    Article  CAS  Google Scholar 

  17. Raji M, Qaiss AE, Bouhfid R (2020) Effects of bleaching and functionalization of kaolinite on the mechanical and thermal properties of polyamide 6 nanocomposites. RSC Adv 10:4916–4926

    Article  CAS  Google Scholar 

  18. Eskandari M, Hosseini SH, Adeli M, Pourjavadi A (2014) Polymer-functionalized carbon nanotubes in cancer therapy: a review. Iran Polym J 23:387–403

    Article  CAS  Google Scholar 

  19. Bhattacharyya AR, Potschke P, Haussler L, Fischer D (2005) Reactive compatibilization of melt mixed PA6/SWNT composites: mechanical properties and morphology. Macromol Chem Phys 206:2084–2095

    Article  CAS  Google Scholar 

  20. Bhattacharyya AR, Potschke P, Abdel-Goad M, Fischer D (2004) Effect of encapsulated SWNT on the mechanical properties of melt mixedPA12/SWNT composites. Chem Phys Lett 392:28–33

    Article  CAS  Google Scholar 

  21. Ajori S, Parsapour H, Ansari R (2019) Structural properties and buckling behavior of non-covalently functionalized single- and double-walled carbon nanotubes with pyrene-linked polyamide in aqueous environment using molecular dynamics simulations. J Phys Chem Solids 131:79–85

    Article  CAS  Google Scholar 

  22. Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35:8825–8830

    Article  CAS  Google Scholar 

  23. Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K (2003) Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett 370:820–824

    Article  CAS  Google Scholar 

  24. Lee SH, Cho E, Jeon SH, Youn JR (2007) Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon 45:2810–2822

    Article  CAS  Google Scholar 

  25. Pan YZ, Li L, Chan SH, Zhao JH (2010) Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Compos Part A Appl S 41:419–426

    Article  CAS  Google Scholar 

  26. Jin SH, Kang CH, Yoon KH, Bang DS, Park YB (2008) Effect of compatibilizer on morphology, thermal, and rheological properties of polypropylene/functionalized multi-walled carbon nanotubes composite. J Appl Poly Sci 111:1028–1033

    Google Scholar 

  27. Wu DF, Zhang YS, Zhang M, Yu W (2009) Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromol 10:417–424

    Article  CAS  Google Scholar 

  28. Chen CC, White JL (1993) Compatibilizing agents in polymer blends: interfacial tension, phase morphology, and mechanical properties. Polym Eng Sci 33:923–930

    Article  CAS  Google Scholar 

  29. Majumdar B, Keskkula H, Paul DR (1994) Mechanical behavior and morphology of toughened aliphatic polyamides. Polymer 35:1399–1408

    Article  CAS  Google Scholar 

  30. Macosko CW, Guegan P, Khandpur AK, Nakayama A, Marechal P, Inoue T (1996) Compatibilizers for melt blending: premade block copolymers. Macromolecules 29:5590–5598

    Article  CAS  Google Scholar 

  31. Harrats C, Dedecker K, Groeninckx G, Jerome R (2003) Reactively and physically compatibilized immiscible polymer blends: stability of the copolymer at the interface. Macromol Symp 198:183–196

    Article  CAS  Google Scholar 

  32. Motahari S, Kafashi B, Taranehjoo S, Sarrafi M (2012) PMMA/polyamide6/silica ternary nanocomposites: investigation of dynamic rheology, crystallization and blend phase morphology. Can J Civ Eng 3:80–93

    Google Scholar 

  33. Wang HL, Shi TJ, Yang SZ, Zhai LF, Hang GP (2006) Crystallization behavior of PA66/SiO2 organic-inorganic hybrid material. J Appl Polym Sci 101:810–817

    Article  CAS  Google Scholar 

  34. Venkatesh GM, Gilbert RD, Fornes RE (1985) Fourier transform infra-red spectroscopy of nylon-6 blends: binary blends with poly(methyl methacrylate) and ethylene vinyl ester/alcohol copolymer. Polymer 26:45–49

    Article  CAS  Google Scholar 

  35. Carone E, Felisberti MI, Nunes SP (1998) Blends of poly(methyl methacrylate) and polyamides. J Mater Sci 33:3729–3735

    Article  CAS  Google Scholar 

  36. Xu Z, Zhao C, Gu A, Fang Z, Tong L (2008) Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black. J Appl Polym Sci 106:2008–2017

    Article  CAS  Google Scholar 

  37. Wu T, Xie T, Yang G (2009) Synthesis and properties of monomer casting polyamide 6/poly(methyl methacrylate) blends. J Appl Polym Sci 111:101–107

    Article  CAS  Google Scholar 

  38. Khaydarov AA, Kazlauciunas A, Mounterey PE, Perrier S (2010) Investigation of polymer blends of polyamide-6 and poly(methyl methacrylate) synthesized by RAFT polymerization. Polym Bull 66:1089–1098

    Article  CAS  Google Scholar 

  39. Mallick S, Khatua BB (2011) Effect of nanoclay on the morphology and properties of nylon 6 and poly(methyl methacrylate) (PMMA) blends. J Macromol Sci Phys 50:1791–1809

    Article  CAS  Google Scholar 

  40. Madhukar K, Sainath AVS, Bikshamaiah N, Srinivas Y, Babu NM, Ashok B, Kumar DS, Rao BS (2014) Thermal properties of single walled carbon nanotubes composites of polyamide 6/poly(methyl methacrylate) blend system. J Therm Anal Calorim 115:345–354

    Article  CAS  Google Scholar 

  41. Madhukar K, Sainath AVS, Rao BS, Kumar DS, Bikshamaiah N, Srinivas Y, Babu NM, Ashok B (2013) Role of carboxylic acid functionalized single walled carbon nanotubes in polyamide 6/poly(methyl methacrylate) blend. Polym Eng Sci 53:397–402

    Article  CAS  Google Scholar 

  42. Sainath AVS, Inoue T, Yonetake K, Koyama K (2001) Thermal behavior of polyacryloyloxybenzoic/nylon 6 blends. Polymer 42:9859–9862

    Article  Google Scholar 

  43. Dixit M, Mathur V, Gupta S, Baboo M, Sharma K, Saxena NS (2009) Morphology, miscibility and mechanical properties of PMMA/PC blends. Phase Transit 82:866–878

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Smita Mohanty, Ms. Mousam Choudhury, LARPM-CIPET, Bhubaneswar and Dr. P. Uday Kumar, NIN, Hyderabad, India for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nampally Bikshamaiah or Katakam Madhukar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikshamaiah, N., Babu, N.M., Kumar, D.S. et al. Carbon nanotube functional group-dependent compatibilization of polyamide 6 and poly(methyl methacrylate) nanocomposites. Iran Polym J 30, 789–799 (2021). https://doi.org/10.1007/s13726-021-00930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00930-z

Keywords

Navigation