Skip to main content
Log in

A Multidirectional Pendulum Kinetic Energy Harvester Based on Homopolar Repulsion for Low-Power Sensors in New Energy Driverless Buses

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

There is a large amount of inertial kinetic energy wasted during the driving of new energy driverless buses. In this paper, a novel multidirectional pendulum kinetic energy harvester, based on homopolar repulsion, is designed for low-powered sensors in new-energy driverless buses. The proposed system consists of three main components: kinetic energy harvest module, energy conversion module and power storage module. The kinetic energy harvest module includes a multidirectional capture mechanism and a deformation amplification mechanism, which captures the acceleration direction of the vehicle, and harvests the inertial kinetic energy through the pendulum swinging respectively. In the energy conversion module, deformation of the piezoelectric beam generates electricity, due to homopolar repulsion from the magnets on the pendulum and piezoelectric beam. The power storage module stores electricity in supercapacitors to power the inertial measurement unit, acceleration sensor and other low-power sensors. The proposed system has completed simulation analysis and prototype tests, which show that the system featuring voltage of 13.6 V and power of 1.233 mW, illustrating the feasibility of self-powered applications in low-power sensors for new energy driverless buses.

Graphic Abstract

Flow chart of the proposed kinetic energy harvester

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Dileep, G. (2020). A survey on smart grid technologies and applications. Renewable Energy, 146, 2589–2625.

    Article  Google Scholar 

  2. Chen, H., Song, Y., Cheng, X., & Zhang, H. (2019). Self-powered electronic skin based on the triboelectric generator. Nano Energy, 56, 252–268.

    Article  Google Scholar 

  3. Khelladi, R., Ghanem, F., Djeddou, M., & Nedil, M. (2019). Dual-band sensor–antenna design for low energy consumption/cost wireless sensor nodes. IET Microwaves, Antennas & Propagation, 13(1), 48–54.

    Article  Google Scholar 

  4. Wang, Z. L., Chen, J., & Lin, L. (2015). Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy & Environmental Science, 8(8), 2250–2282.

    Article  Google Scholar 

  5. Zhang, X., Grajal, J., Vazquez-Roy, J. L., Radhakrishna, U., Wang, X., Chern, W., Zhou, L., Lin, Y., Shen, P.-C., Ji, X., Ling, X., Zubair, A., Zhang, Y., Wang, H., Dubey, M., Kong, J., Dresselhaus, M., & Palacios, T. (2019). Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature, 566(7744), 368–372.

    Article  Google Scholar 

  6. Fatnassi, E., Chebbi, O., & Chaouachi, J. (2017). Dealing with the empty vehicle movements in personal rapid transit system with batteries constraints in a dynamic context. Journal of Advanced Transportation. https://doi.org/10.1155/2017/8512728.

    Article  Google Scholar 

  7. Long, G., Ding, F., Zhang, N., Zhang, J., & Qin, A. (2020). Regenerative active suspension system with residual energy for in-wheel motor driven electric vehicle. Applied Energy, 260, 114180.

    Article  Google Scholar 

  8. Wang, Z., Zhang, T., Zhang, Z., Yuan, Y., & Liu, Y. (2020). A high-efficiency regenerative shock absorber considering twin ball screws transmissions for application in range-extended electric vehicles. Energy and Built Environment, 1(1), 36–49.

    Article  Google Scholar 

  9. Askari, H., Khajepour, A., Khamesee, M. B., & Wang, Z. L. (2019). Embedded self-powered sensing systems for smart vehicles and intelligent transportation. Nano Energy, 66, 104103.

    Article  Google Scholar 

  10. Abdelkareem, M. A. A., Eldaly, A. B. M., Kamal Ahmed Ali, M., Youssef, I. M., & Xu, L. (2020). Monte Carlo sensitivity analysis of vehicle suspension energy harvesting in frequency domain. Journal of Advanced Research, 24, 53–67.

    Article  Google Scholar 

  11. Tabbai, Y., Alaoui-Belghiti, A., El Moznine, R., Belhora, F., Hajjaji, A., & El Ballouti, A. (2020). Friction and wear performance of disc brake pads and pyroelectric energy harvesting. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(2), 487–500.

    Article  Google Scholar 

  12. Esmaeeli, R., Aliniagerdroudbari, H., Hashemi, S. R., Alhadri, M., Zakri, W., Batur, C., & Farhad, S. (2019). Design, modeling, and analysis of a high performance piezoelectric energy harvester for intelligent tires. International Journal of Energy Research, 43(10), 5199–5212.

    Article  Google Scholar 

  13. Pang, W., Yu, H., Zhang, Y., & Yan, H. (2019). Solar photovoltaic based air cooling system for vehicles. Renewable Energy, 130, 25–31.

    Article  Google Scholar 

  14. Cui, J., Yoon, H., & Youn, B. D. (2018). An omnidirectional biomechanical energy harvesting (OBEH) sidewalk block for a self-generative power grid in a smart city. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 507–517.

    Article  Google Scholar 

  15. Zhang, T., Feng, Y., Wu, X., Pan, Y., Zhang, Z., & Yuan, Y. (2020). A high-efficiency, portable, solar-powered cooling system based on a foldable-flower mechanism and wireless power transfer technology for vehicle cabins. Energy Technology, 8(6), 2000028.

    Article  Google Scholar 

  16. Kim, T. Y., Kwak, J., & Kim, B.-W. (2019). Application of compact thermoelectric generator to hybrid electric vehicle engine operating under real vehicle operating conditions. Energy Conversion and Management, 201, 112150.

    Article  Google Scholar 

  17. Maurya, D., Kumar, P., Khaleghian, S., Sriramdas, R., Kang, M. G., Kishore, R. A., Kumar, V., Song, H.-C., Park, J.-M., Taheri, S., & Priya, S. (2018). Energy harvesting and strain sensing in smart tire for next generation autonomous vehicles. Applied Energy, 232, 312–322.

    Article  Google Scholar 

  18. Kadum, H., Cal, R. B., Quigley, M., Cortina, G., & Calaf, M. (2020). Compounded energy gains in collocated wind plants: energy balance quantification and wake morphology description. Renewable Energy, 150, 868–877.

    Article  Google Scholar 

  19. Mutsuda, H., Rahmawati, S., Taniguchi, N., Nakashima, T., & Doi, Y. (2019). Harvesting ocean energy with a small-scale tidal-current turbine and fish aggregating device in the Indonesian Archipelagos. Sustainable Energy Technologies and Assessments, 35, 160–171.

    Article  Google Scholar 

  20. Guo, L., Gu, X., Chu, P., Hemour, S., & Wu, K. (2020). Collaboratively harvesting ambient radiofrequency and thermal energy. IEEE Transactions on Industrial Electronics, 67(5), 3736–3746.

    Article  Google Scholar 

  21. Zou, H.-X., Zhao, L.-C., Gao, Q.-H., Zuo, L., Liu, F.-R., Tan, T., Wei, K.-X., & Zhang, W.-M. (2019). Mechanical modulations for enhancing energy harvesting: principles, methods and applications. Applied Energy, 255, 113871.

    Article  Google Scholar 

  22. Kim, S.-C., Kim, J.-G., Kim, Y.-C., Yang, S.-J., & Lee, H. (2019). A study of electromagnetic vibration energy harvesters: design optimization and experimental validation. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 779–788.

    Article  Google Scholar 

  23. Zhang, Y., Zheng, R., Nakano, K., & Cartmell, M. P. (2018). Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting. Applied Physics Letters, 112(14), 143901.

    Article  Google Scholar 

  24. Zhang, X., Zhang, Z., Pan, H., Salman, W., Yuan, Y., & Liu, Y. (2016). A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads. Energy Conversion and Management, 118, 287–294.

    Article  Google Scholar 

  25. Xie, Q., Zhang, T., Pan, Y., Zhang, Z., Yuan, Y., & Liu, Y. (2020). A novel oscillating buoy wave energy harvester based on a spatial double X-shaped mechanism for self-powered sensors in sea-crossing bridges. Energy Conversion and Management, 204, 112286.

    Article  Google Scholar 

  26. Qi, L., Pan, H., Bano, S., Zhu, M., Liu, J., Zhang, Z., Liu, Y., & Yuan, Y. (2018). A high-efficiency road energy harvester based on a chessboard sliding plate using semi-metal friction materials for self-powered applications in road traffic. Energy Conversion and Management, 165, 748–760.

    Article  Google Scholar 

  27. Aldawood, G., Nguyen, H. T., & Bardaweel, H. (2019). High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations. Applied Energy, 253, 113546.

    Article  Google Scholar 

  28. Alikhassi, M., Nili-Ahmadabadi, M., Tikani, R., & Karimi, M. H. (2019). A novel approach for energy harvesting from feedback fluidic oscillator. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(4), 769–778.

    Article  Google Scholar 

  29. Wang, Y., Zhu, X., Zhang, T., Bano, S., Pan, H., Qi, L., Zhang, Z., & Yuan, Y. (2018). A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. Applied Energy, 230, 52–61.

    Article  Google Scholar 

  30. Sun, S., & Tse, P. W. (2019). Modeling of a horizontal asymmetric U-shaped vibration-based piezoelectric energy harvester (U-VPEH). Mechanical Systems and Signal Processing, 114, 467–485.

    Article  Google Scholar 

  31. Qin, Y., Wei, T., Zhao, Y., & Chen, H. (2019). Simulation and experiment on bridge-shaped nonlinear piezoelectric vibration energy harvester. Smart Materials and Structures, 28(4), 045015.

    Article  Google Scholar 

  32. Tang, M., Guan, Q., Wu, X., Zeng, X., Zhang, Z., & Yuan, Y. (2019). A high-efficiency multidirectional wind energy harvester based on impact effect for self-powered wireless sensors in the grid. Smart Materials and Structures, 28(11), 115022.

    Article  Google Scholar 

  33. Nabavi, S., & Zhang, L. (2019). T-shaped piezoelectric structure for high-performance MEMS vibration energy harvesting. Journal of Microelectromechanical Systems, 28(6), 1100–1112.

    Article  Google Scholar 

  34. Bouzelata, Y., Kurt, E., Uzun, Y., & Chenni, R. (2018). Mitigation of high harmonicity and design of a battery charger for a new piezoelectric wind energy harvester. Sensors and Actuators A Physical, 273, 72–83.

    Article  Google Scholar 

  35. Fan, K., Chang, J., Chao, F., & Pedrycz, W. (2015). Design and development of a multipurpose piezoelectric energy harvester. Energy Conversion and Management, 96, 430–439.

    Article  Google Scholar 

  36. Zhang, Z., Zhang, X., Chen, W., Rasim, Y., Salman, W., Pan, H., Yuan, Y., & Wang, C. (2016). A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle. Applied Energy, 178, 177–188.

    Article  Google Scholar 

  37. Zhao, Z., Wang, T., Shi, J., Zhang, B., Zhang, R., Li, M., & Wen, Y. (2019). Analysis and application of the piezoelectric energy harvester on light electric logistics vehicle suspension systems. Energy Science and Engineering, 7(6), 2741–2755.

    Article  Google Scholar 

  38. Naseri, F., Farjah, E., & Ghanbari, T. (2017). An efficient regenerative braking system based on battery/supercapacitor for electric, hybrid, and plug-in hybrid electric vehicles with BLDC motor. IEEE Transactions on Vehicular Technology, 66(5), 3724–3738.

    Google Scholar 

  39. Wang, R., Tang, E., Yang, G., & Han, Y. (2020). Experimental research on dynamic response of PZT-5H under impact load. Ceramics International, 46(3), 2868–2876.

    Article  Google Scholar 

  40. Pillatsch, P., Xiao, B. L., Shashoua, N., Gramling, H. M., Yeatman, E. M., & Wright, P. K. (2017). Degradation of bimorph piezoelectric bending beams in energy harvesting applications. Smart Materials and Structures, 26(3), 035046.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Foundation of China under Grants Nos. 51975490, and by the Science and Technology Projects of Sichuan under Grants Nos.2021JDRC0118 and 2021JDRC0096. Zutao Zhang and Yajia Pan are the authors to whom all correspondence should be addressed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajia Pan or Zutao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 12204 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Tang, M., Li, H. et al. A Multidirectional Pendulum Kinetic Energy Harvester Based on Homopolar Repulsion for Low-Power Sensors in New Energy Driverless Buses. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 603–618 (2022). https://doi.org/10.1007/s40684-021-00344-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00344-5

Keywords

Navigation