Skip to main content
Log in

Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Here we present a novel approach of intercritical heat treatment for microstructure tailoring, in which intercritical annealing is introduced between conventional quenching and tempering. This induced a heterogeneous microstructure consisting of soft intercritical ferrite and hard tempered martensite, resulting in a low yield ratio (YR) and high impact toughness in a high-strength low-alloy steel. The initial yielding and subsequent work hardening behavior of the steel during tensile deformation were modified by the presence of soft intercritical ferrite after intercritical annealing, in comparison to the steel with full martensitic microstructure. The increase in YR was related to the reduction in hardness difference between the soft and hard phases due to the precipitation of nano-carbides and the recovery of dislocations during tempering. The excellent low-temperature toughness was ascribed not only to the decrease in probability of microcrack initiation for the reduction of hardness difference between two phases, but also to the increase in resistance of microcrack propagation caused by the high density of high angle grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y.Q. Weng, C.F. Yang, and C.J. Shang, State-of-the-art and development trends of HSLA steels in China, Iron Steel, 46(2011), No. 9, p. 1.

    CAS  Google Scholar 

  2. D.S. Liu, B.G. Cheng, and Y.Y. Chen, Strengthening and toughening of a heavy plate steel for shipbuilding with yield strength of approximately 690 MPa, Metall. Mater. Trans. A, 44(2013), No. 1, p. 440.

    Article  Google Scholar 

  3. S.K. Dhua, A. Ray, and D.S. Sarma, Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels, Mater. Sci. Eng. A, 318(2001), No. 1–2, p. 197.

    Article  Google Scholar 

  4. M.J. Sohrabi, H. Mirzadeh, M.S. Mehranpour, A. Heydarinia, and R. Razi, Aging kinetics and mechanical properties of copper-bearing low-carbon HSLA-100 microalloyed steel, Arch. Civ. Mech. Eng., 19(2019), No. 4, p. 1409.

    Article  Google Scholar 

  5. S.T. Wang, S.W. Yang, K.W. Gao, and X.L. He, Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning, Int. J. Miner. Metall. Mater., 16(2009), No. 1, p. 58.

    Article  CAS  Google Scholar 

  6. Y.J. Zhao, X.P. Ren, W.C. Yang, and Y. Zang, Design of a low-alloy high-strength and high-toughness martensitic steel, Int. J. Miner. Metall. Mater., 20(2013), No. 8, p. 733.

    Article  CAS  Google Scholar 

  7. G. Krauss, Tempering of lath martensite in low and medium carbon steels: assessment and challenges, Steel Res. Int., 88(2017), No. 10, art. No. 1700038.

    Google Scholar 

  8. C.J. Tang, S.L. Liu, and C.J. Shang, Micromechanical behavior and failure mechanism of F/B multi-phase high performance steel, J. Iron Steel Res. Int., 23(2016), No. 5, p. 489.

    Article  Google Scholar 

  9. Y.M. Kim, S.K. Kim, and N.J. Kim, Simple method for tailoring the optimum microstructures of high-strength low-alloyed steels by the use of constitutive equation, Mater. Sci. Eng. A, 743(2019), p. 138.

    Article  CAS  Google Scholar 

  10. X.H. Li, Y.C. Liu, K.F. Gan, J. Dong, and C.X. Liu, Acquiring a low yield ratio well synchronized with enhanced strength of HSLA pipeline steels through adjusting multiple-phase micro-structures, Mater. Sci. Eng. A, 785(2020), art. No. 139350.

  11. W.S. Li, H.Y. Gao, Z.Y. Li, H. Nakashima, S. Hata, and W.H. Tian, Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process, Int. J. Miner. Metall. Mater., 23(2016), No. 3, p. 303.

    Article  CAS  Google Scholar 

  12. X.L. Wu and Y.T. Zhu, Heterogeneous materials: A new class of materials with unprecedented mechanical properties, Mater. Res. Lett., 5(2017), No. 8, p. 527.

    Article  CAS  Google Scholar 

  13. B. Gao, X.F. Chen, Z.Y. Pan, J.S. Li, Y. Ma, Y. Cao, M.P. Liu, Q.Q. Lai, L.R. Xiao, and H. Zhou, A high-strength heterogeneous structural dual-phase steel, J. Mater. Sci., 54(2019), p. 12898.

    Article  CAS  Google Scholar 

  14. Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, and R.D.K. Misra Recent progress in third-generation low alloy steels developed under M3 microstructure control, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 1.

    Article  CAS  Google Scholar 

  15. Z.J. Xie, G. Han, Y.S. Yu, C.J. Shang, and R.D.K. Misra, The determining role of intercritical annealing condition on retained austenite and mechanical properties of a low carbon steel: Experimental and theoretical analysis, Mater. Charact., 153(2019), p. 208.

    Article  CAS  Google Scholar 

  16. Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, and C.J. Shang, Stabilization of retained austenite by the two-step inter-critical heat treatment and its effect on the toughness of a low alloyed steel, Mater. Des., 59(2014), p. 193.

    Article  CAS  Google Scholar 

  17. B.G. Cheng, M. Luo, and D.S. Liu, High strength, low carbon, Cu containing steel plates with tailored microstructure and low yield ratio, Ironmaking Steelmaking, 42(2015), No. 8, p. 608.

    Article  CAS  Google Scholar 

  18. W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7(1992), No. 6, p. 1564.

    Article  CAS  Google Scholar 

  19. Y.M. Kim, S.K. Kim, Y.J. Lim, and N.J. Kim, Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels, ISIJ Int., 42(2002), No. 12, p. 1571.

    Article  CAS  Google Scholar 

  20. X.G. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki, and T. Furuhara, Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy, Acta Mater., 144(2018), p. 601.

    Article  CAS  Google Scholar 

  21. S.F. Yuan, Z.J. Xie, J.L. Wang, L.H. Zhu, L. Yan, C.J. Shang, and R.D.K. Misra, Effect of heterogeneous microstructure on refining austenite grain size in low alloy heavy-gage plate, Metals, 10(2020), No. 1, p. 132.

    Article  CAS  Google Scholar 

  22. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 527(2010), No. 10–11, p. 2738.

    Article  Google Scholar 

  23. V. Vitek and F. Kroupa, Dislocation theory of slip geometry and temperature dependence of flow stress in BCC metals, Phys. Status Solidi B, 18(1966), No. 2, p. 703.

    Article  CAS  Google Scholar 

  24. A. Bag and K.K. Ray, A new model to explain the unusual tensile behavior of high martensite dual-phase steels, Metall. Mater. Trans. A, 32(2001), No. 9, p. 2400.

    Article  Google Scholar 

  25. U.F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: The FCC case, Prog. Mater Sci., 48(2003), No. 3, p. 171.

    Article  CAS  Google Scholar 

  26. G. Krauss, Steels: Processing, Structure, and Performance, 2nd ed., ASM International, Ohio, 2015, p. 373.

    Book  Google Scholar 

  27. C.Y. Chen, C.H. Li, T.C. Tsao, P.H. Chiu, S.P. Tsai, J.R. Yang, L.J. Chiang, and S.H. Wang, A novel technique for developing a dual-phase steel with a lower strength difference between ferrite and martensite, Mater. Today Commun., 23(2020), art. No. 100895.

  28. C.J. Tang, C.J. Shang, S.L. Liu, H.L. Guan, R.D.K. Misra, and Y.B. Chen, Effect of volume fraction of bainite on strain hardening behavior and deformation mechanism of F/B multiphase steel, Mater. Sci. Eng. A, 731(2018), p. 173.

    Article  CAS  Google Scholar 

  29. H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solids, 1(1952), No. 1, p. 1.

    Article  Google Scholar 

  30. J.H. Hollomon, Tensile deformation, Trans. Met. Soc. AIME, 162(1945), p. 268.

    Google Scholar 

  31. S.K. Kim, Y.M. Kim, Y.J. Lim, and N.J. Kim, Relationship between yield ratio and the material constants of the Swift equation, Met. Mater. Int., 12(2006), No. 2, art. No. 131.

    Google Scholar 

  32. Y.C. Liu, L. Shi, C.X. Liu, L.M. Yu, Z.S. Yan, and H.J. Li, Effect of step quenching on microstructures and mechanical properties of HSLA steel, Mater. Sci. Eng. A, 675(2016), p. 371.

    Article  CAS  Google Scholar 

  33. G.H. Gao, H. Zhang, and B.Z. Bai, Effect of tempering temperature on low temperature impact toughness of a low carbon Mnseries bainitic steel, Acta Metall. Sin., 47(2011), No. 5, p. 513.

    CAS  Google Scholar 

  34. B.B. Wu, Z.Q. Wang, X.L. Wang, W.S. Xu, C.J. Shang, and R.D.K. Misra, Toughening of martensite matrix in high strength low alloy steel: Regulation of variant pairs, Mater. Sci. Eng. A, 759(2019), p. 430.

    Article  CAS  Google Scholar 

  35. B.B. Wu, H. Chen, C.J. Shang, K.Y. Xie, and R.D.K. Misra, Effect of tempering mode on the microstructure and mechanical properties of a lean alloy martensitic steel: Conventional reheating versus induction reheating, J. Mater. Eng. Perform., 28(2019), p. 2807.

    Article  CAS  Google Scholar 

  36. X.D. Li, Y.R. Fan, X.P. Ma, S.V. Subramanian, and C.J. Shang, Influence of martensite-austenite constituents formed at different intercritical temperatures on toughness, Mater. Des., 67(2015), p. 457.

    Article  CAS  Google Scholar 

  37. X.D. Li, C.J. Shang, X.P. Ma, B. Gault, S.V. Subramanian, J.B. Sun, and R.D.K. Misra, Elemental distribution in the martensite-austenite constituent in intercritically reheated coarsegrained heat-affected zone of a high-strength pipeline steel, Scripta Mater., 139(2017), p. 67.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFB 0304800). One of the authors, H. Guo, would like to express her gratitude for the financial support of China Scholarship Council (award for one year visiting at Northwestern University in the USA, No. 201706465056).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Guo or Cheng-jia Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Ys., Hu, B., Gao, Ml. et al. Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel. Int J Miner Metall Mater 28, 816–825 (2021). https://doi.org/10.1007/s12613-020-2235-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2235-5

Keywords

Navigation