Skip to main content
Log in

Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

We investigated the effect of Al2O3 content on the viscosity of CaO-SiO2-Al2O3-8wt%MgO-1wt%Cr2O3 (mass ratio of CaO/SiO2 is 1.0, and Al2O3 content is 17wt%–29wt%) slags. The results show that the viscosity of the slag increases gradually with increases in the Al2O3 content in the range of 17wt% to 29wt% due to the role of Al2O3 as a network former in the polymerization of the aluminosilicate structure of the slag. With increases in the Al2O3 content from 17wt% to 29wt%, the apparent activation energy of the slags also increases from 180.85 to 210.23 kJ/mol, which is consistent with the variation in the critical temperature. The Fourier-transform infrared spectra indicate that the degree of polymerization of this slag is increased by the addition of Al2O3. The application of Iida’s model for predicting the slag viscosity in the presence of Cr2O3 indicates that the calculated viscosity values fit well with the measured values when both the temperature and Al2O3 content are at relatively low levels, i.e., the temperature range of 1673 to 1803 K and the Al2O3 content range of 17wt%–29wt% in CaO-SiO2-Al2O3-8wt%MgO-1wt%Cr2O3 slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.H. Li, X.H. Li, Q.Y. Hu, Z.X. Wang, Y.Y. Zhou, J.C. Zheng, W.R. Liu, and L.J. Li, Effect of pre-roasting on leaching of laterite, Hydrometallurgy, 99(2009), No. 1–2, p. 84.

    Article  CAS  Google Scholar 

  2. T. Norgate and S. Jahanshahi, Assessing the energy and greenhouse gas footprints of nickel laterite processing, Miner. Eng., 24(2011), No. 7, p. 698.

    Article  CAS  Google Scholar 

  3. B.S. Zhang, K.X. Jiang, H.B. Wang, and Y.P. Feng, Progress of pyrometallurgical smelting technologies for laterite nickel ore in China, Nonferrous Met. Eng. Res., 33(2012), No. 5, p. 16.

    Article  Google Scholar 

  4. Y.P. Zhang, Technico-economical analysis of Ni-containing hot metal production with laterite in the blast furnace, Ferro-Alloys, 44(2013), No. 4, p. 10.

    CAS  Google Scholar 

  5. R.Z. Xu, J.L. Zhang, X.Y. Fan, W.W. Zheng, and Y.A. Zhao, Effect of MnO on high-alumina slag viscosity and corrosion behavior of refractory in slags, ISIJ Int., 57(2017), No. 11, p. 1887.

    Article  CAS  Google Scholar 

  6. R.Z. Xu, J.L. Zhang, Z.Y. Wang, and K.X. Jiao, Influence of Cr2O3 and B2O3 on viscosity and structure of high alumina slag, Steel Res. Int., 88(2017), No. 4, art. No. 1600241.

    Google Scholar 

  7. R.Z. Xu, J.L. Zhang, R.Y. Ma, K.X. Jiao, and Y.A. Zhao, Influence of TiO2 on the viscosity of a high alumina slag and on carbon brick corrosion, Steel Res. Int., 89(2018), No. 3, art. No. 1700353.

    Google Scholar 

  8. C.K. Du, J. Yang, X.Z. Zhao, Y.J. Shi, J.L. You, and X.D. Gao, Viscosity and desulfurization behavior of blast furnace slag with high Al2O3 content, J. Iron Steel Res., 25(2013), No. 7, p. 19.

    Article  CAS  Google Scholar 

  9. J. Ma, G.Q. Fu, W. Li, and M.Y. Zhu, Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 310.

    Article  CAS  Google Scholar 

  10. Z.M. Yan, X.W. Lv, D. Liang J. Zhang, and C.G. Bai, Transition of blast furnace slag from silicates-based to aluminates-based: Viscosity, Metall. Mater. Trans. B, 48(2017), No. 2, p. 1092.

    Article  CAS  Google Scholar 

  11. X.F. Zhang, T. Jiang, X.X. Xue, and B.S. Hu, Influence of MgO/Al2O3 ratio on viscosity of blast furnace slag with high Al2O3 content, Steel Res. Int., 87(2016), No. 1, p. 87.

    Article  CAS  Google Scholar 

  12. L. Yao, S. Ren, X.Q. Wang, Q.C. Liu, L.Y. Dong, J.F. Yang, and J.B. Liu, Effect of Al2O3, MgO and CaO/SiO2 on viscosity of high alumina blast furnace slag, Steel Res. Int., 87(2016), No. 2, p. 241.

    Article  CAS  Google Scholar 

  13. H. Kim, H. Matsuura, F. Tsukihashi, W.L. Wang, D.J. Min, and I. Sohn, Effect of Al2O3 and CaO/SiO2 on the viscosity of calcium-silicate-based slags containing 10 mass pct MgO, Metall. Mater. Trans. B, 44(2013), No. 1, p. 5.

    Article  CAS  Google Scholar 

  14. J.H. Park, D.J. Min, and H.S. Song, Amphoteric behavior of alumina in viscous flow and structure of CaO-SiO2(-MgO)-Al2O3 slags, Metall. Mater. Trans. B, 35(2004), No. 2, p. 269.

    Article  Google Scholar 

  15. G. Urbain, Viscosity estimation of slags, Steel Res. Int., 58(1987), No. 3, p. 111.

    Article  CAS  Google Scholar 

  16. P.V. Riboud, Y. Roux, L.D. Lucas, and H. Gaye, Improvement of continuous casting powders, Fachber. Hüttenprax. Metallweiterverarbei., 19(1981), No. 10, p. 859.

    CAS  Google Scholar 

  17. T. Iida, H. Sakai, Y. Kita, and K. Murakami, Equation for estimating viscosities of industrial mold fluxes, High Temp. Mater. Processes, 19(2000), No. 3–4, p. 153.

    Article  CAS  Google Scholar 

  18. T. Iida, H. Sakai, Y. Kita, and K. Shigeno, An equation for accurate prediction of the viscosities of blast furnace type slags from chemical composition, ISIJ Int., 40(2000), p. S110.

    Article  CAS  Google Scholar 

  19. K.C. Mills and S. Sridhar, Viscosities of ironmaking and steel-making slags, Ironmaking Steelmaking, 26(1999), No. 4, p. 262.

    Article  CAS  Google Scholar 

  20. H.S. Ray and S. Pal, Simple method for theoretical estimation of viscosity of oxide melts using optical basicity, Ironmaking Steelmaking, 31(2004), No. 2, p. 125.

    Article  CAS  Google Scholar 

  21. A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman, Estimation of viscosity for blast furnace type slags, Ironmaking Steelmaking, 34(2007), No. 6, p. 477.

    Article  CAS  Google Scholar 

  22. M. Nakamoto, J. Lee, and T. Tanaka, A model for estimation of viscosity of molten silicate slag, ISIJ Int., 45(2005), No. 5, p. 651.

    Article  CAS  Google Scholar 

  23. M. Nakamoto, Y. Miyabayashi, L. Holappa, and T. Tanaka, A model for estimating viscosities of aluminosilicate melts containing alkali oxides, ISIJ Int., 47(2007), No. 10, p. 1409.

    Article  CAS  Google Scholar 

  24. Y. Miyabayashi, M. Nakamoto, T. Tanaka, and T. Yamamoto, A model for estimating the viscosity of molten aluminosilicate containing calcium fluoride, ISIJ Int., 49(2009), No. 3, p. 343.

    Article  CAS  Google Scholar 

  25. G.H. Zhang, K.C. Chou, and K. Mills, A structurally based viscosity model for oxide melts, Metall. Mater. Trans. B, 45(2014), No. 2, p. 698.

    Article  CAS  Google Scholar 

  26. G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, and C.G. Bai, Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag, ISIJ Int., 55(2015), No. 7, p. 1367.

    Article  CAS  Google Scholar 

  27. J.H. Park, D.J. Min, and H.S. Song, The effect of CaF2 on the viscosities and structures of CaO-SiO2(-MgO)-CaF2 slggs, Metall. Mater. Trans. B, 33(2002), No. 5, p. 723.

    Article  Google Scholar 

  28. C. Wang, J.L Zhang, Z.J. Liu, K.X. Jiao, G.W. Wang, J.Q. Yang, and K.C. Chou, Effect of chlorine on the viscosities and structures of CaO-SiO2-CaCl2 slags, Metall. Mater. Trans. B, 48(2017), No. 1, p. 328.

    Article  CAS  Google Scholar 

  29. K.Y. Ko and J.H. Park, Effect of CaF2 addition on the viscosity and structure of CaO-SiO2-MnO slags, ISIJ Int., 53(2013), No. 6, p. 958.

    Article  CAS  Google Scholar 

  30. J.H. Park, Structure-property correlations of CaO-SiO2-MnO slag derived from Raman spectroscopy, ISIJ Int., 52(2012), No. 9, p. 1627.

    Article  CAS  Google Scholar 

  31. J.H. Park, D.J. Min, and H.S. Song, Structural investigation of CaO-Al2O3 and CaO-Al2O3-CaF2 slags via fourier transform infrared spectra, ISIJ Int., 42(2002), No. 1, p. 38.

    Article  CAS  Google Scholar 

  32. W.H. Kim, I. Sohn, and D.J. Min, A study on the viscous behaviour with K2O additions in the CaO-SiO2-Al2O3-MgO-K2O quinary slag system, Steel Res. Int., 81(2010), No. 9, p. 735.

    Article  CAS  Google Scholar 

  33. J.S. Machin, T.B. Yee, and D.L. Hanna, Viscosity studies of system CaO-MgO-Al2O3-SiO2: III, 35, 45, and 50% SiO2, J. Am. Ceram. Soc., 35(1952), No. 12, p. 322.

    Article  CAS  Google Scholar 

  34. J.S. Machin and D.L Hanna, Viscosity studies of system CaO-MgO-Al2O3-SiO2: I, 40% SiO2, J. Am. Ceram. Soc., 28(1945), No. 11, p. 310.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities of China (Nos. FRF-TP-20-048A2 and FRF-AT-20-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ren-ze Xu or Jian-liang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Cy., Wang, C., Xu, Rz. et al. Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags. Int J Miner Metall Mater 28, 797–803 (2021). https://doi.org/10.1007/s12613-020-2187-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2187-9

Keywords

Navigation