1932

Abstract

Giant unilamellar vesicles (GUVs) have gained great popularity as mimicries for cellular membranes. As their sizes are comfortably above the optical resolution limit, and their lipid composition is easily controlled, they are ideal for quantitative light microscopic investigation of dynamic processes in and on membranes. However, reconstitution of functional proteins into the lumen or the GUV membrane itself has proven technically challenging. In recent years, a selection of techniques has been introduced that tremendously improve GUV-assay development and enable the precise investigation of protein–membrane interactions under well-controlled conditions. Moreover, due to these methodological advances, GUVs are considered important candidates as protocells in bottom-up synthetic biology. In this review, we discuss the state of the art of the most important vesicle production and protein encapsulation methods and highlight some key protein systems whose functional reconstitution has advanced the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-100620-114132
2021-05-06
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-100620-114132.html?itemId=/content/journals/10.1146/annurev-biophys-100620-114132&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abate AR, Hung T, Mary P, Agresti JJ, Weitz DA 2010. High-throughput injection with microfluidics using picoinjectors. PNAS 107:19163–66
    [Google Scholar]
  2. 2. 
    Abkarian M, Loiseau E, Massiera G. 2011. Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter 7:4610–14
    [Google Scholar]
  3. 3. 
    Akashi K, Miyata H, Itoh H, Kinosita K. 1996. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 71:3242–50
    [Google Scholar]
  4. 4. 
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K et al. 2002. Molecular Biology of the Cell. New York: Garland Sci. , 4th ed..
  5. 5. 
    Allen TM, Cullis PR. 2004. Drug delivery systems: entering the mainstream. Science 303:1818–22
    [Google Scholar]
  6. 6. 
    Almén MS, Nordström KJV, Fredriksson R, Schiöth HB. 2009. Mapping the human membrane proteome: A majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50
    [Google Scholar]
  7. 7. 
    Altamura E, Milano F, Tangorra RR, Trotta M, Omar OH et al. 2017. Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells. PNAS 114:3837–42
    [Google Scholar]
  8. 8. 
    Angelova MI, Dimitrov DS. 1986. Liposome electroformation. Faraday Discuss. Chem. Soc. 81:303–11
    [Google Scholar]
  9. 9. 
    Aufinger L, Simmel FC. 2019. Establishing communication between artificial cells. Chemistry 25:12659–70
    [Google Scholar]
  10. 10. 
    Bacia K, Futai E, Prinz S, Meister A, Daum S et al. 2011. Multibudded tubules formed by COPII on artificial liposomes. Sci. Rep. 1:17
    [Google Scholar]
  11. 11. 
    Bacia K, Schuette CG, Kahya N, Jahn R, Schwille P. 2004. SNAREs prefer liquid-disordered over “raft” (liquid-ordered) domains when reconstituted into giant unilamellar vesicles. J. Biol. Chem. 279:37951–55
    [Google Scholar]
  12. 12. 
    Bashirzadeh Y, Wubshet NH, Liu AP. 2020. Confinement geometry tunes fascin-actin bundle structures and consequently the shape of a lipid bilayer vesicle. Front. Mol. Biosci. 7:337
    [Google Scholar]
  13. 13. 
    Berhanu S, Ueda T, Kuruma Y. 2019. Artificial photosynthetic cell producing energy for protein synthesis. Nat. Commun. 10:1325
    [Google Scholar]
  14. 14. 
    Bertin A, de Franceschi N, de la Mora E, Maiti S, Alqabandi M et al. 2020. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation. Nat. Commun. 11:2663
    [Google Scholar]
  15. 15. 
    Blanken D, Foschepoth D, Serrão AC, Danelon C. 2020. Genetically controlled membrane synthesis in liposomes. Nat. Commun. 11:4317
    [Google Scholar]
  16. 16. 
    Cabre EJ, Sanchez-Gorostiaga A, Carrara P, Ropero N, Casanova M et al. 2013. Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination. J. Biol. Chem. 288:26625–34
    [Google Scholar]
  17. 17. 
    Campillo C, Sens P, Köster D, Pontani L-L, Lévy D et al. 2013. Unexpected membrane dynamics unveiled by membrane nanotube extrusion. Biophys. J. 104:1248–56
    [Google Scholar]
  18. 18. 
    Caorsi V, Lemière J, Campillo C, Bussonnier M, Manzi J et al. 2016. Cell-sized liposome doublets reveal active tension build-up driven by acto-myosin dynamics. Soft Matter 12:6223–31
    [Google Scholar]
  19. 19. 
    Carvalho K, Lemiere J, Faqir F, Manzi J, Blanchoin L et al. 2013. Actin polymerization or myosin contraction: two ways to build up cortical tension for symmetry breaking. Philos. Trans. R. Soc. Lond. B 368:20130005
    [Google Scholar]
  20. 20. 
    Carvalho K, Tsai FC, Lees E, Voituriez R, Koenderink GH, Sykes C 2013. Cell-sized liposomes reveal how actomyosin cortical tension drives shape change. PNAS 110:16456–61
    [Google Scholar]
  21. 21. 
    Caspi Y, Dekker C. 2016. Mapping out Min protein patterns in fully confined fluidic chambers. eLife 5:e19271
    [Google Scholar]
  22. 22. 
    Claudet C, In M, Massiera G. 2016. Method to disperse lipids as aggregates in oil for bilayers production. Eur. Phys. J. E 39:9
    [Google Scholar]
  23. 23. 
    Cortese JD, Schwab B 3rd, Frieden C, Elson EL 1989. Actin polymerization induces a shape change in actin-containing vesicles. PNAS 865773–77
    [Google Scholar]
  24. 24. 
    Criado M, Keller BU. 1987. A membrane fusion strategy for single-channel recordings of membranes usually non-accessible to patch-clamp pipette electrodes. FEBS Lett 224:172–76
    [Google Scholar]
  25. 25. 
    Darszon A, Vandenberg CA, Schönfeld M, Ellisman MH, Spitzer NC, Montal M 1980. Reassembly of protein-lipid complexes into large bilayer vesicles: perspectives for membrane reconstitution. PNAS 77:239–43
    [Google Scholar]
  26. 26. 
    De Franceschi N, Alqabandi M, Miguet N, Caillat C, Mangenot S et al. 2019. The ESCRT protein CHMP2B acts as a diffusion barrier on reconstituted membrane necks. J. Cell Sci. 132:jcs217968
    [Google Scholar]
  27. 27. 
    Deamer D, Dworkin JP, Sandford SA, Bernstein MP, Allamandola LJ. 2002. The first cell membranes. Astrobiology 2:371–81
    [Google Scholar]
  28. 28. 
    Deng N-N, Yelleswarapu M, Huck WTS. 2016. Monodisperse uni- and multicompartment liposomes. J. Am. Chem. Soc. 138:7584–91
    [Google Scholar]
  29. 29. 
    Deng N-N, Yelleswarapu M, Zheng L, Huck WTS. 2017. Microfluidic assembly of monodisperse vesosomes as artificial cell models. J. Am. Chem. Soc. 139:587–90
    [Google Scholar]
  30. 30. 
    Deshpande S, Caspi Y, Meijering AEC, Dekker C. 2016. Octanol-assisted liposome assembly on chip. Nat. Commun. 7:10447
    [Google Scholar]
  31. 31. 
    Deshpande S, Pfohl T. 2015. Real-time dynamics of emerging actin networks in cell-mimicking compartments. PLOS ONE 10:e0116521
    [Google Scholar]
  32. 32. 
    Dezi M, Di Cicco A, Bassereau P, Lévy D 2013. Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents. PNAS 110:7276–81
    [Google Scholar]
  33. 33. 
    Doherty GJ, McMahon HT. 2008. Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annu. Rev. Biophys. 37:65–95
    [Google Scholar]
  34. 34. 
    Dürre K, Keber FC, Bleicher P, Brauns F, Cyron CJ et al. 2018. Capping protein-controlled actin polymerization shapes lipid membranes. Nat. Commun. 9:1630
    [Google Scholar]
  35. 35. 
    Elani Y, Gee A, Law RV, Ces O. 2013. Engineering multi-compartment vesicle networks. Chem. Sci. 4:3332–38
    [Google Scholar]
  36. 36. 
    Elani Y, Trantidou T, Wylie D, Dekker L, Polizzi K et al. 2018. Constructing vesicle-based artificial cells with embedded living cells as organelle-like modules. Sci. Rep. 8:4564
    [Google Scholar]
  37. 37. 
    Elbaum M, Fygenson DK, Libchaber A. 1996. Buckling microtubules in vesicles. Phys. Rev. Lett. 76:4078–81
    [Google Scholar]
  38. 38. 
    Emsellem V, Cardoso O, Tabeling P. 1998. Vesicle deformation by microtubules: a phase diagram. Phys. Rev. E 58:4807–10
    [Google Scholar]
  39. 39. 
    Exterkate M, Driessen AJM. 2019. Synthetic minimal cell: self-reproduction of the boundary layer. ACS Omega 4:5293–303
    [Google Scholar]
  40. 40. 
    Faivre-Moskalenko C, Dogterom M 2002. Dynamics of microtubule asters in microfabricated chambers: the role of catastrophes. PNAS 99:16788–93
    [Google Scholar]
  41. 41. 
    Frohnmayer JP, Brüggemann D, Eberhard C, Neubauer S, Mollenhauer C et al. 2015. Minimal synthetic cells to study integrin-mediated adhesion. Angew. Chem. Int. Ed. 54:12472–78
    [Google Scholar]
  42. 42. 
    Funakoshi K, Suzuki H, Takeuchi S. 2007. Formation of giant lipid vesiclelike compartments from a planar lipid membrane by a pulsed jet flow. J. Am. Chem. Soc. 129:12608–9
    [Google Scholar]
  43. 43. 
    Furusato T, Horie F, Matsubayashi HT, Amikura K, Kuruma Y, Ueda T. 2018. De novo synthesis of basal bacterial cell division proteins FtsZ, FtsA, and ZipA inside giant vesicles. ACS Synth. Biol. 7:953–61
    [Google Scholar]
  44. 44. 
    Fygenson DK, Elbaum M, Shraiman B, Libchaber A. 1997. Microtubules and vesicles under controlled tension. Phys. Rev. E 55:850–59
    [Google Scholar]
  45. 45. 
    Fygenson DK, Marko JF, Libchaber A. 1997. Mechanics of microtubule-based membrane extension. Phys. Rev. Lett. 79:4497–500
    [Google Scholar]
  46. 46. 
    Ganzinger KA, Merino-Salomón A, García-Soriano DA, Butterfield AN, Litschel T et al. 2020. FtsZ reorganization facilitates deformation of giant vesicles in microfluidic traps. Angew. Chem. Int. Ed. 59:21372–76
    [Google Scholar]
  47. 47. 
    Ganzinger KA, Schwille P. 2019. More from less—bottom-up reconstitution of cell biology. J. Cell Sci. 132:jcs227488
    [Google Scholar]
  48. 48. 
    Garenne D, Libchaber A, Noireaux V 2020. Membrane molecular crowding enhances MreB polymerization to shape synthetic cells from spheres to rods. PNAS 117:1902–9
    [Google Scholar]
  49. 49. 
    Garenne D, Noireaux V. 2020. Analysis of cytoplasmic and membrane molecular crowding in genetically programmed synthetic cells. Biomacromolecules 21:2808–17
    [Google Scholar]
  50. 50. 
    Girard P, Pécréaux J, Lenoir G, Falson P, Rigaud J-L, Bassereau P. 2004. A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophys. J. 87:419–29
    [Google Scholar]
  51. 51. 
    Godino E, López JN, Foschepoth D, Cleij C, Doerr A et al. 2019. De novo synthesized Min proteins drive oscillatory liposome deformation and regulate FtsA-FtsZ cytoskeletal patterns. Nat. Commun. 10:4969
    [Google Scholar]
  52. 52. 
    Göpfrich K, Haller B, Staufer O, Dreher Y, Mersdorf U et al. 2019. One-pot assembly of complex giant unilamellar vesicle-based synthetic cells. ACS Synth. Biol. 8:937–47
    [Google Scholar]
  53. 53. 
    Häckl W, Bärmann M, Sackmann E. 1998. Shape changes of self-assembled actin bilayer composite membranes. Phys. Rev. Lett. 80:1786–89
    [Google Scholar]
  54. 54. 
    Hagiya M, Konagaya A, Kobayashi S, Saito H, Murata S. 2014. Molecular robots with sensors and intelligence. Acc. Chem. Res. 47:1681–90
    [Google Scholar]
  55. 55. 
    Haller B, Göpfrich K, Schröter M, Janiesch J-W, Platzman I, Spatz JP. 2018. Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems. Lab Chip 18:2665–74
    [Google Scholar]
  56. 56. 
    Härtel T, Schwille P. 2014. ESCRT-III mediated cell division in Sulfolobus acidocaldarius—a reconstitution perspective. Front. Microbiol. 5:257
    [Google Scholar]
  57. 57. 
    Hartmann E, Rapoport TA, Lodish HF 1989. Predicting the orientation of eukaryotic membrane-spanning proteins. PNAS 86:5786–90
    [Google Scholar]
  58. 58. 
    Hayashi M, Nishiyama M, Kazayama Y, Toyota T, Harada Y, Takiguchi K. 2016. Reversible morphological control of tubulin-encapsulating giant liposomes by hydrostatic pressure. Langmuir 32:3794–802
    [Google Scholar]
  59. 59. 
    Heinemann F, Vogel SK, Schwille P. 2013. Lateral membrane diffusion modulated by a minimal actin cortex. Biophys. J. 104:1465–75
    [Google Scholar]
  60. 60. 
    Honda M, Takiguchi K, Ishikawa S, Hotani H. 1999. Morphogenesis of liposomes encapsulating actin depends on the type of actin-crosslinking. J. Mol. Biol. 287:293–300
    [Google Scholar]
  61. 61. 
    Horger KS, Estes DJ, Capone R, Mayer M. 2009. Films of agarose enable rapid formation of giant liposomes in solutions of physiologic ionic strength. J. Am. Chem. Soc. 131:1810–19
    [Google Scholar]
  62. 62. 
    Hotani H, Miyamoto H. 1990. Dynamic features of microtubules as visualized by dark-field microscopy. Adv. Biophys. 26:135–56
    [Google Scholar]
  63. 63. 
    Ichihashi N, Usui K, Kazuta Y, Sunami T, Matsuura T, Yomo T. 2013. Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nat. Commun. 4:2494
    [Google Scholar]
  64. 64. 
    Ierushalmi N, Malik-Garbi M, Manhart A, Abu-Shah E, Goode BL et al. 2019. Centering and symmetry breaking in confined contracting actomyosin networks. arXiv:1907.10642 [physics.bio-ph ]
    [Google Scholar]
  65. 65. 
    Ito H, Nishigami Y, Sonobe S, Ichikawa M. 2015. Wrinkling of a spherical lipid interface induced by actomyosin cortex. Phys. Rev. E 92:062711
    [Google Scholar]
  66. 66. 
    Jiménez M, Martos A, Cabré EJ, Raso A, Rivas G. 2013. Giant vesicles: a powerful tool to reconstruct bacterial division assemblies in cell-like compartments. Environ. Microbiol. 15:3158–68
    [Google Scholar]
  67. 67. 
    Jørgensen IL, Kemmer GC, Pomorski TG. 2017. Membrane protein reconstitution into giant unilamellar vesicles: a review on current techniques. Eur. Biophys. J. 46:103–19
    [Google Scholar]
  68. 68. 
    Kahya N, Pécheur E-I, de Boeij WP, Wiersma DA, Hoekstra D. 2001. Reconstitution of membrane proteins into giant unilamellar vesicles via peptide-induced fusion. Biophys. J. 81:1464–74
    [Google Scholar]
  69. 69. 
    Kamiya K, Kawano R, Osaki T, Akiyoshi K, Takeuchi S. 2016. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes. Nat. Chem. 8:881–89
    [Google Scholar]
  70. 70. 
    Kato A, Yanagisawa M, Sato YT, Fujiwara K, Yoshikawa K. 2012. Cell-sized confinement in microspheres accelerates the reaction of gene expression. Sci. Rep. 2:283
    [Google Scholar]
  71. 71. 
    Keber FC, Loiseau E, Sanchez T, DeCamp SJ, Giomi L et al. 2014. Topology and dynamics of active nematic vesicles. Science 345:1135–39
    [Google Scholar]
  72. 72. 
    Küchler A, Yoshimoto M, Luginbühl S, Mavelli F, Walde P. 2016. Enzymatic reactions in confined environments. Nat. Nanotechnol. 11:409–20
    [Google Scholar]
  73. 73. 
    Kuruma Y, Stano P, Ueda T, Luisi PL. 2009. A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. Biochim. Biophys. Acta Biomembr. 1788:567–74
    [Google Scholar]
  74. 74. 
    Lagny TJ, Bassereau P. 2015. Bioinspired membrane-based systems for a physical approach of cell organization and dynamics: usefulness and limitations. Interface Focus 5:20150038
    [Google Scholar]
  75. 75. 
    Lee KY, Park S-J, Lee KA, Kim S-H, Kim H et al. 2018. Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system. Nat. Biotechnol. 36:530–35
    [Google Scholar]
  76. 76. 
    Limozin L, Bärmann M, Sackmann E. 2003. On the organization of self-assembled actin networks in giant vesicles. Eur. Phys. J. E 10:319–30
    [Google Scholar]
  77. 77. 
    Limozin L, Sackmann E. 2002. Polymorphism of cross-linked actin networks in giant vesicles. Phys. Rev. Lett. 89:168103
    [Google Scholar]
  78. 78. 
    Lipowsky R, Richter D, Kremer K. 1992. The structure and conformation of amphiphilic membranes: overview. The Structure and Conformation of Amphiphilic Membranes: Proceedings of the International Workshop on Amphiphlic Membranes, Jülich, Germany, September 16–18, 19911–6 Berlin: Springer
    [Google Scholar]
  79. 79. 
    Litschel T, Kelley CF, Holz D, Koudehi MA, Vogel SK et al. 2021. Reconstitution of contractile actomyosin rings in vesicles. Nat. Commun. 12 In press. https://doi.org/10.1038/s41467-021-22422-7
    [Crossref]
  80. 80. 
    Litschel T, Ramm B, Maas R, Heymann M, Schwille P. 2018. Beating vesicles: encapsulated protein oscillations cause dynamic membrane deformations. Angew. Chem. Int. Ed. 57:16286–90
    [Google Scholar]
  81. 81. 
    Liu AP, Fletcher DA. 2006. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J. 91:4064–70
    [Google Scholar]
  82. 82. 
    Liu AP, Fletcher DA. 2009. Biology under construction: in vitro reconstitution of cellular function. Nat. Rev. Mol. Cell Biol. 10:644–50
    [Google Scholar]
  83. 83. 
    Liu AP, Richmond DL, Maibaum L, Pronk S, Geissler PL, Fletcher DA. 2008. Membrane-induced bundling of actin filaments. Nat. Phys. 4:789–93
    [Google Scholar]
  84. 84. 
    Loiseau E, Schneider JA, Keber FC, Pelzl C, Massiera G et al. 2016. Shape remodeling and blebbing of active cytoskeletal vesicles. Sci. Adv. 2:e1500465
    [Google Scholar]
  85. 85. 
    López-Montero I, López-Navajas P, Mingorance J, Vélez M, Vicente M, Monroy F 2013. Membrane reconstitution of FtsZ-ZipA complex inside giant spherical vesicles made of E. coli lipids: large membrane dilation and analysis of membrane plasticity. Biochim. Biophys. Acta Biomembr. 1828:687–98
    [Google Scholar]
  86. 86. 
    Maan R, Loiseau E, Bausch AR. 2018. Adhesion of active cytoskeletal vesicles. Biophys. J. 115:2395–402
    [Google Scholar]
  87. 87. 
    Maeda YT, Nakadai T, Shin J, Uryu K, Noireaux V, Libchaber A. 2012. Assembly of MreB filaments on liposome membranes: a synthetic biology approach. ACS Synth. Biol. 1:53–59
    [Google Scholar]
  88. 88. 
    Majumder S, Garamella J, Wang Y-L, DeNies M, Noireaux V, Liu AP. 2017. Cell-sized mechanosensitive and biosensing compartment programmed with DNA. Chem. Commun. 53:7349–52
    [Google Scholar]
  89. 89. 
    Martino C, Kim S-H, Horsfall L, Abbaspourrad A, Rosser SJ et al. 2012. Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. Angew. Chem. Int. Ed. 51:6416–20
    [Google Scholar]
  90. 90. 
    Matosevic S, Paegel BM. 2013. Layer-by-layer cell membrane assembly. Nat. Chem. 5:958–63
    [Google Scholar]
  91. 91. 
    Mellouli S, Monterroso B, Vutukuri HR, te Brinke E, Chokkalingam V et al. 2013. Self-organization of the bacterial cell-division protein FtsZ in confined environments. Soft Matter 9:10493–500
    [Google Scholar]
  92. 92. 
    Menestrina G. 1986. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J. Membr. Biol. 90:177–90
    [Google Scholar]
  93. 93. 
    Merkle D, Kahya N, Schwille P. 2008. Reconstitution and anchoring of cytoskeleton inside giant unilamellar vesicles. ChemBioChem 9:2673–81
    [Google Scholar]
  94. 94. 
    Mitchison TJ. 1992. Compare and contrast actin filaments and microtubules. Mol. Biol. Cell 3:1309–15
    [Google Scholar]
  95. 95. 
    Miyata H, Hotani H 1992. Morphological changes in liposomes caused by polymerization of encapsulated actin and spontaneous formation of actin bundles. PNAS 89:11547–51
    [Google Scholar]
  96. 96. 
    Miyata H, Nishiyama S, Akashi K, Kinosita K 1999. Protrusive growth from giant liposomes driven by actin polymerization. PNAS 96:2048–53
    [Google Scholar]
  97. 97. 
    Miyazaki M, Chiba M, Eguchi H, Ohki T, Ishiwata S. 2015. Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings in vitro. Nat. Cell Biol. 17:480–89
    [Google Scholar]
  98. 98. 
    Moga A, Yandrapalli N, Dimova R, Robinson T 2019. Optimization of the inverted emulsion method for high-yield production of biomimetic giant unilamellar vesicles. ChemBioChem 20:2674–82
    [Google Scholar]
  99. 99. 
    Monnard P-A, Deamer DW. 2002. Membrane self-assembly processes: steps toward the first cellular life. Anat. Rec. 268:196–207
    [Google Scholar]
  100. 100. 
    Montes LR, Alonso A, Goñi FM, Bagatolli LA. 2007. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions. Biophys. J. 93:3548–54
    [Google Scholar]
  101. 101. 
    Murrell M, Pontani L-L, Guevorkian K, Cuvelier D, Nassoy P, Sykes C. 2011. Spreading dynamics of biomimetic actin cortices. Biophys. J. 100:1400–9
    [Google Scholar]
  102. 102. 
    Nishimura K, Suzuki H, Toyota T, Yomo T. 2012. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets. J. Colloid Interface Sci. 376:119–25
    [Google Scholar]
  103. 103. 
    Noireaux V, Libchaber A 2004. A vesicle bioreactor as a step toward an artificial cell assembly. PNAS 101:17669–74
    [Google Scholar]
  104. 104. 
    Nomura SM, Tsumoto K, Hamada T, Akiyoshi K, Nakatani Y, Yoshikawa K. 2003. Gene expression within cell-sized lipid vesicles. ChemBioChem 4:1172–75
    [Google Scholar]
  105. 105. 
    Oberholzer T, Nierhaus KH, Luisi PL. 1999. Protein expression in liposomes. Biochem. Biophys. Res. Commun. 261:238–41
    [Google Scholar]
  106. 106. 
    Ohta N, Kato Y, Watanabe H, Mori H, Matsuura T. 2016. In vitro membrane protein synthesis inside Sec translocon-reconstituted cell-sized liposomes. Sci. Rep. 6:36466
    [Google Scholar]
  107. 107. 
    Okushima S, Nisisako T, Torii T, Higuchi T. 2004. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20:9905–8
    [Google Scholar]
  108. 108. 
    Opathalage A, Norton MM, Juniper MPN, Langeslay B, Aghvami SA et al. 2019. Self-organized dynamics and the transition to turbulence of confined active nematics. PNAS 1164788–97
    [Google Scholar]
  109. 109. 
    Osawa M, Anderson DE, Erickson HP. 2008. Reconstitution of contractile FtsZ rings in liposomes. Science 320:792–94
    [Google Scholar]
  110. 110. 
    Osawa M, Erickson HP 2013. Liposome division by a simple bacterial division machinery. PNAS 110:11000–4
    [Google Scholar]
  111. 111. 
    Ota S, Yoshizawa S, Takeuchi S. 2009. Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Angew. Chem. Int. Ed. 48:6533–37
    [Google Scholar]
  112. 112. 
    Pautot S, Frisken BJ, Weitz DA 2003. Engineering asymmetric vesicles. PNAS 100:10718–21
    [Google Scholar]
  113. 113. 
    Pautot S, Frisken BJ, Weitz DA. 2003. Production of unilamellar vesicles using an inverted emulsion. Langmuir 19:2870–79
    [Google Scholar]
  114. 114. 
    Perrier DL, Vahid A, Kathavi V, Stam L, Rems L et al. 2019. Response of an actin network in vesicles under electric pulses. Sci. Rep. 9:8151
    [Google Scholar]
  115. 115. 
    Petit J, Polenz I, Baret J-C, Herminghaus S, Bäumchen O. 2016. Vesicles-on-a-chip: a universal microfluidic platform for the assembly of liposomes and polyersomes. Eur. Phys. J. E 39:59
    [Google Scholar]
  116. 116. 
    Pinot M, Chesnel F, Kubiak JZ, Arnal I, Nedelec FJ, Gueroui Z. 2009. Effects of confinement on the self-organization of microtubules and motors. Curr. Biol. 19:954–60
    [Google Scholar]
  117. 117. 
    Pontani L-L, van der Gucht J, Salbreux G, Heuvingh J, Joanny J-F, Sykes C. 2009. Reconstitution of an actin cortex inside a liposome. Biophys. J. 96:192–98
    [Google Scholar]
  118. 118. 
    Pott T, Bouvrais H, Méléard P. 2008. Giant unilamellar vesicle formation under physiologically relevant conditions. Chem. Phys. Lipids 154:115–19
    [Google Scholar]
  119. 119. 
    Powell K. 2018. How biologists are creating life-like cells from scratch. Nature 563:172–75
    [Google Scholar]
  120. 120. 
    Prévost C, Zhao H, Manzi J, Lemichez E, Lappalainen P et al. 2015. IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat. Commun. 6:8529
    [Google Scholar]
  121. 121. 
    Przybylo M, Sýkora J, Humpolíčková J, Benda A, Zan A, Hof M. 2006. Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir 22:9096–99
    [Google Scholar]
  122. 122. 
    Ramirez-Diaz DA, Merino-Salomon A, Heymann M, Schwille P. 2019. Bidirectional FtsZ filament treadmilling promotes membrane constriction via torsional stress. bioRxiv 587790. https://doi.org/10.1101/587790
    [Crossref]
  123. 123. 
    Rampioni G, D'Angelo F, Leoni L, Stano P 2019. Gene-expressing liposomes as synthetic cells for molecular communication studies. Front. Bioeng. Biotechnol. 7:1
    [Google Scholar]
  124. 124. 
    Reeves JP, Dowben RM. 1969. Formation and properties of thin-walled phospholipid vesicles. J. Cell Physiol. 73:49–60
    [Google Scholar]
  125. 125. 
    Richmond DL, Schmid EM, Martens S, Stachowiak JC, Liska N, Fletcher DA 2011. Forming giant vesicles with controlled membrane composition, asymmetry, and contents. PNAS 108:9431–36
    [Google Scholar]
  126. 126. 
    Robinson T, Kuhn P, Eyer K, Dittrich PS. 2013. Microfluidic trapping of giant unilamellar vesicles to study transport through a membrane pore. Biomicrofluidics 7:044105
    [Google Scholar]
  127. 127. 
    Saleem M, Morlot S, Hohendahl A, Manzi J, Lenz M, Roux A. 2015. A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats. Nat. Commun. 6:6249
    [Google Scholar]
  128. 128. 
    Sanchez T, Chen DTN, DeCamp SJ, Heymann M, Dogic Z. 2012. Spontaneous motion in hierarchically assembled active matter. Nature 491:431–34
    [Google Scholar]
  129. 129. 
    Sato Y, Hiratsuka Y, Kawamata I, Murata S, Nomura SM. 2017. Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci. Robot. 2:eaal3735
    [Google Scholar]
  130. 130. 
    Schäfer E, Kliesch T-T, Janshoff A. 2013. Mechanical properties of giant liposomes compressed between two parallel plates: impact of artificial actin shells. Langmuir 29:10463–74
    [Google Scholar]
  131. 131. 
    Schäfer E, Vache M, Kliesch TT, Janshoff A. 2015. Mechanical response of adherent giant liposomes to indentation with a conical AFM-tip. Soft Matter 11:4487–95
    [Google Scholar]
  132. 132. 
    Schroer FEC, Baldauf L, Buren L, Wassenaar TA, Melo MN et al. 2020. Charge-dependent interactions of monomeric and filamentous actin with lipid bilayers. PNAS 1175861–72
    [Google Scholar]
  133. 133. 
    Schwille P, Spatz J, Landfester K, Bodenschatz E, Herminghaus S et al. 2018. MaxSynBio: avenues towards creating cells from the bottom up. Angew. Chem. Int. Ed. 57:13382–92
    [Google Scholar]
  134. 134. 
    Scott A, Noga MJ, de Graaf P, Westerlaken I, Yildirim E, Danelon C 2016. Cell-free phospholipid biosynthesis by gene-encoded enzymes reconstituted in liposomes. PLOS ONE 11:e0163058
    [Google Scholar]
  135. 135. 
    Shaklee PM, Semrau S, Malkus M, Kubick S, Dogterom M, Schmidt T. 2010. Protein incorporation in giant lipid vesicles under physiological conditions. ChemBioChem 11:175–79
    [Google Scholar]
  136. 136. 
    Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T et al. 2001. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19:751–55
    [Google Scholar]
  137. 137. 
    Shum HC, Lee D, Yoon I, Kodger T, Weitz DA. 2008. Double emulsion template monodisperse phospholipid vesicles. Langmuir 24:7651–53
    [Google Scholar]
  138. 138. 
    Soares e Silva M, Alvarado J, Nguyen J, Georgoulia N, Mulder BM, Koenderink GH. 2011. Self-organized patterns of actin filaments in cell-sized confinement. Soft Matter 7:1063141
    [Google Scholar]
  139. 139. 
    Soga H, Fujii S, Yomo T, Kato Y, Watanabe H, Matsuura T. 2014. In vitro membrane protein synthesis inside cell-sized vesicles reveals the dependence of membrane protein integration on vesicle volume. ACS Synth. Biol. 3:372–79
    [Google Scholar]
  140. 140. 
    Sonnleitner A, Schütz GJ, Schmidt T. 1999. Free Brownian motion of individual lipid molecules in biomembranes. Biophys. J. 77:2638–42
    [Google Scholar]
  141. 141. 
    Stachowiak JC, Richmond DL, Li TH, Brochard-Wyart F, Fletcher DA. 2009. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation. Lab Chip 9:2003–9
    [Google Scholar]
  142. 142. 
    Stachowiak JC, Richmond DL, Li TH, Liu AP, Parekh SH, Fletcher DA 2008. Unilamellar vesicle formation and encapsulation by microfluidic jetting. PNAS 105:4697–702
    [Google Scholar]
  143. 143. 
    Steinkühler J, De Tillieux P, Knorr RL, Lipowsky R, Dimova R. 2018. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry. Sci. Rep. 8:11838
    [Google Scholar]
  144. 144. 
    Streicher P, Nassoy P, Bärmann M, Dif A, Marchi-Artzner V et al. 2009. Integrin reconstituted in GUVs: a biomimetic system to study initial steps of cell spreading. Biochim. Biophys. Acta Biomembr. 1788:2291–300
    [Google Scholar]
  145. 145. 
    Szathmáry E, Santos M, Fernando C 2005. Evolutionary potential and requirements for minimal protocells. Prebiotic Chemistry P Walde 167–211 Berlin: Springer
    [Google Scholar]
  146. 146. 
    Szent-Györgyi AG. 2004. The early history of the biochemistry of muscle contraction. J. Gen. Physiol. 123:631–41
    [Google Scholar]
  147. 147. 
    Szostak JW, Bartel DP, Luisi PL. 2001. Synthesizing life. Nature 409:387–90
    [Google Scholar]
  148. 148. 
    Tareste D, Shen J, Melia TJ, Rothman JE 2008. SNAREpin/Munc18 promotes adhesion and fusion of large vesicles to giant membranes. PNAS 105:2380–85
    [Google Scholar]
  149. 149. 
    Tawfik DS, Griffiths AD. 1998. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16:652–56
    [Google Scholar]
  150. 150. 
    Teh S-Y, Khnouf R, Fan H, Lee AP 2011. Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics. Biomicrofluidics 5:044113
    [Google Scholar]
  151. 151. 
    Tsai FC, Koenderink GH. 2015. Shape control of lipid bilayer membranes by confined actin bundles. Soft Matter 11:8834–47
    [Google Scholar]
  152. 152. 
    Tsai F-C, Stuhrmann B, Koenderink GH. 2011. Encapsulation of active cytoskeletal protein networks in cell-sized liposomes. Langmuir 27:10061–71
    [Google Scholar]
  153. 153. 
    Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA. 2005. Monodisperse double emulsions generated from a microcapillary device. Science 308:537–41
    [Google Scholar]
  154. 154. 
    Virk SS, Baruah VJ, Goswami P. 2013. Giant vesicles as encapsulating matrix for stabilizing alcohol oxidase and as container for coupled enzymatic reactions. Artif. Cells Nanomed. Biotechnol. 41:255–58
    [Google Scholar]
  155. 155. 
    Visco I, Hoege C, Hyman AA, Schwille P. 2016. In vitro reconstitution of a membrane switch mechanism for the polarity protein LGL. J. Mol. Biol. 428:4828–42
    [Google Scholar]
  156. 156. 
    Walde P, Cosentino K, Engel H, Stano P. 2010. Giant vesicles: preparations and applications. ChemBioChem 11:848–65
    [Google Scholar]
  157. 157. 
    Weinberger A, Tsai F-C, Koenderink GH, Schmidt TF, Itri R et al. 2013. Gel-assisted formation of giant unilamellar vesicles. Biophys. J. 105:154–64
    [Google Scholar]
  158. 158. 
    Weiss M, Frohnmayer JP, Benk LT, Haller B, Janiesch J-W et al. 2018. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater. 17:89–96
    [Google Scholar]
  159. 159. 
    Weitz M, Kim J, Kapsner K, Winfree E, Franco E, Simmel FC. 2014. Diversity in the dynamical behavior of a compartmentalized programmable biochemical oscillator. Nat. Chem. 6:295–302
    [Google Scholar]
  160. 160. 
    Yanagisawa M, Iwamoto M, Kato A, Yoshikawa K, Oiki S. 2011. Oriented reconstitution of a membrane protein in a giant unilamellar vesicle: experimental verification with the potassium channel KcsA. J. Am. Chem. Soc. 133:11774–79
    [Google Scholar]
  161. 161. 
    Yoshimoto M 2011. Stabilization of enzymes through encapsulation in liposomes. Enzyme Stabilization and Immobilization: Methods and Protocols SD Minteer 9–18 Totowa, NJ: Humana Press
    [Google Scholar]
  162. 162. 
    Yu W, Sato K, Wakabayashi M, Nakaishi T, Ko-Mitamura EP et al. 2001. Synthesis of functional protein in liposome. J. Biosci. Bioeng. 92:590–93
    [Google Scholar]
  163. 163. 
    Zhang Y, Cheng C, Cusick B, LeDuc PR. 2007. Chemically encapsulated structural elements for probing the mechanical responses of biologically inspired systems. Langmuir 23:8129–34
    [Google Scholar]
  164. 164. 
    Zieske K, Chwastek G, Schwille P. 2016. Protein patterns and oscillations on lipid monolayers and in microdroplets. Angew. Chem. Int. Ed. 55:13455–59
    [Google Scholar]
  165. 165. 
    Zieske K, Schwille P. 2013. Reconstitution of pole-to-pole oscillations of min proteins in microengineered polydimethylsiloxane compartments. Angew. Chem. Int. Ed. 52:459–62
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-100620-114132
Loading
/content/journals/10.1146/annurev-biophys-100620-114132
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error