1932

Abstract

Biofilms are structured communities formed by a single or multiple microbial species. Within biofilms, bacteria are embedded into extracellular matrix, allowing them to build macroscopic objects. Biofilm structure can respond to environmental changes such as the presence of antibiotics or predators. By adjusting expression levels of surface and extracellular matrix components, bacteria tune cell-to-cell interactions. One major challenge in the field is the fact that these components are very diverse among different species. Deciphering how physical interactions within biofilms are affected by changes in gene expression is a promising approach to obtaining a more unified picture of how bacteria modulate biofilms. This review focuses on recent advances in characterizing attractive and repulsive forces between bacteria in correlation with biofilm structure, dynamics, and spreading. How bacteria control physical interactions to maximize their fitness is an emerging theme.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062920-063646
2021-05-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-062920-063646.html?itemId=/content/journals/10.1146/annurev-biophys-062920-063646&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Berne C, Ellison CK, Ducret A, Brun YV. 2018. Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol. 16:616–27
    [Google Scholar]
  2. 2. 
    Beroz F, Yan J, Sabass B, Stone HA, Bassler BL et al. 2018. Verticalization of bacterial biofilms. Nat. Phys. 14:954–60
    [Google Scholar]
  3. 3. 
    Biais N, Ladoux B, Higashi D, So M, Sheetz M. 2008. Cooperative retraction of bundled type IV pili enables nanonewton force generations. PLOS Biol 6:e87
    [Google Scholar]
  4. 4. 
    Bonazzi D, Lo Schiavo V, Machata S, Djafer-Cherif I, Nivoit P et al. 2018. Intermittent pili-mediated forces fluidize Neisseria meningitides aggregates promoting vascular colonization. Cell 174:143–55.e16
    [Google Scholar]
  5. 5. 
    Bos J, Zhang Q, Vyawahare S, Rogers E, Rosenberg SM, Austin RH. 2015. Emergence of antibiotic resistance from multinucleated bacterial filaments. PNAS 112:178–83
    [Google Scholar]
  6. 6. 
    Chamot-Rooke J, Mikaty G, Malosse C, Soyer M, Dumont A et al. 2011. Posttranslational modification of pili upon cell contact triggers N. meningitides dissemination. Science 331:778–82
    [Google Scholar]
  7. 7. 
    Charles-Orszag A, Lemichez E, Nhieu GTV, Duménil G. 2016. Microbial pathogenesis meets biomechanics. Curr. Opin. Cell Biol. 38:31–37
    [Google Scholar]
  8. 8. 
    Clausen M, Jakovljevic V, Søgaard-Andersen L, Maier B. 2009. High-force generation is a conserved property of type IV pilus systems. J. Bacteriol. 191:4633–38
    [Google Scholar]
  9. 9. 
    Copenhagen K, Alert R, Wingreen NS, Shaevitz JW. 2020. Topological defects induce layer formation in Myxococcus xanthus colonies. arXiv:2001.03804v2 [physics.bio-ph]
  10. 10. 
    Cox CD, Bavi N, Martinac B. 2018. Bacterial mechanosensors. Annu. Rev. Physiol. 80:71–93
    [Google Scholar]
  11. 11. 
    Craig L, Forest KT, Maier B. 2019. Type IV pili: dynamics, biophysics and functional consequences. Nat. Rev. Microbiol. 17:429–40
    [Google Scholar]
  12. 12. 
    Cronenberg T, Hennes M, Wielert I, Maier B. 2020. Antibiotics modulate attractive interactions in bacterial colonies affecting survivability under combined treatment. PLOS Pathog 17e1009251
  13. 13. 
    Dell'Arciprete D, Blow ML, Brown AT, Farrell FDC, Lintuvuori JS et al. 2018. A growing bacterial colony in two dimensions as an active nematic. Nat. Commun. 9:4190
    [Google Scholar]
  14. 14. 
    Dong JJ, Klumpp S. 2018. Simulation of colony pattern formation under differential adhesion and cell proliferation. Soft Matter 14:1908–16
    [Google Scholar]
  15. 15. 
    Doostmohammadi A, Thampi SP, Yeomans JM. 2016. Defect-mediated morphologies in growing cell colonies. Phys. Rev. Lett. 117:048102
    [Google Scholar]
  16. 16. 
    Dorken G, Ferguson GP, French CE, Poon WCK. 2012. Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide. J. R. Soc. Interface 9:3490–502
    [Google Scholar]
  17. 17. 
    Drescher K, Dunkel J, Nadell CD, van Teeffelen S, Grnja I et al. 2016. Architectural transitions in Vibrio cholera biofilms at single-cell resolution. PNAS 113:E2066–72
    [Google Scholar]
  18. 18. 
    Dufrêne YF, Persat A. 2020. Mechanomicrobiology: how bacteria sense and respond to forces. Nat. Rev. Microbiol. 18:227–40
    [Google Scholar]
  19. 19. 
    Duvernoy M-C, Mora T, Ardré M, Croquette V, Bensimon D et al. 2018. Asymmetric adhesion of rod-shaped bacteria controls microcolony morphogenesis. Nat. Commun. 9:1120
    [Google Scholar]
  20. 20. 
    Ellison CK, Dalia TN, Vidal Ceballos A, Wang JC, Biais N et al. 2018. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat. Microbiol. 3:773–80
    [Google Scholar]
  21. 21. 
    Ellison CK, Kan J, Dillard RS, Kysela DT, Ducret A et al. 2017. Obstruction of pilus retraction stimulates bacterial surface sensing. Science 358:535–38
    [Google Scholar]
  22. 22. 
    Formosa-Dague C, Feuillie C, Beaussart A, Derclaye S, Kucharíková S et al. 2016. Sticky matrix: adhesion mechanism of the staphylococcal polysaccharide intercellular adhesin. ACS Nano 10:3443–52
    [Google Scholar]
  23. 23. 
    Ghosh P, Mondal J, Ben-Jacob E, Levine H. 2015. Mechanically-driven phase separation in a growing bacterial colony. PNAS 112:E2166–73
    [Google Scholar]
  24. 24. 
    Glass DS, Riedel-Kruse IH. 2018. A synthetic bacterial cell-cell adhesion toolbox for programming multicellular morphologies and patterns. Cell 174:649–58.e16
    [Google Scholar]
  25. 25. 
    Gordon VD, Wang L. 2019. Bacterial mechanosensing: The force will be with you, always. J. Cell Sci. 132:jcs227694
    [Google Scholar]
  26. 26. 
    Grant MAA, Wacław B, Allen RJ, Cicuta P. 2014. The role of mechanical forces in the planar-to-bulk transition in growing Escherichia coli microcolonies. J. R. Soc. Interface 11:0400
    [Google Scholar]
  27. 27. 
    Harris AK. 1976. Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J. Theor. Biol. 61:267–85
    [Google Scholar]
  28. 28. 
    Hartmann R, Singh PK, Pearce P, Mok R, Song B et al. 2019. Emergence of three-dimensional order and structure in growing biofilms. Nat. Phys. 15:251–56
    [Google Scholar]
  29. 29. 
    Higashi DL, Lee SW, Snyder A, Weyand NJ, Bakke A, So M. 2007. Dynamics of Neisseria gonorrhoeae attachment: microcolony development, cortical plaque formation, and cytoprotection. Infect. Immun. 75:4743–53
    [Google Scholar]
  30. 30. 
    Hug I, Deshpande S, Sprecher KS, Pfohl T, Jenal U. 2017. Second messenger-mediated tactile response by a bacterial rotary motor. Science 358:531–34
    [Google Scholar]
  31. 31. 
    Iskratsch T, Wolfenson H, Sheetz MP. 2014. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15:825–33
    [Google Scholar]
  32. 32. 
    Jeckel H, Jelli E, Hartmann R, Singh PK, Mok R et al. 2019. Learning the space-time phase diagram of bacterial swarm expansion. PNAS 116:1489–94
    [Google Scholar]
  33. 33. 
    Kaplan JB, Izano EA, Gopal P, Karwacki MT, Kim S et al. 2012. Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureas. mBio 3:e00198–12
    [Google Scholar]
  34. 34. 
    Kim W, Levy SB, Foster KR. 2016. Rapid radiation in bacteria leads to a division of labour. Nat. Commun. 7:10508
    [Google Scholar]
  35. 35. 
    Kim W, Racimo F, Schluter J, Levy SB, Foster KR. 2014. Importance of positioning for microbial evolution. PNAS 111:E1639–47
    [Google Scholar]
  36. 36. 
    Kysela DT, Randich AM, Caccamo PD, Brun YV. 2016. Diversity takes shape: understanding the mechanistic and adaptive basis of bacterial morphology. PLOS Biol 14:e1002565
    [Google Scholar]
  37. 37. 
    Lee CK, de Anda J, Baker AE, Bennett RR, Luo Y et al. 2018. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. PNAS 115:4471–76
    [Google Scholar]
  38. 38. 
    Lee DD, Prindle A, Liu J, Süel GM. 2017. SnapShot: electrical communication in biofilms. Cell 170:214
    [Google Scholar]
  39. 39. 
    Maier B, Potter L, So M, Seifert HS, Sheetz MP. 2002. Single pilus motor forces exceed 100 pN. PNAS 99:16012–17
    [Google Scholar]
  40. 40. 
    Maier B, Wong GCL. 2015. How bacteria use type IV pili machinery on surfaces. Trends Microbiol 23:775–88
    [Google Scholar]
  41. 41. 
    Mann EE, Wozniak DJ. 2012. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev. 36:893–916
    [Google Scholar]
  42. 42. 
    Mannik J, Driessen R, Galajda P, Keymer JE, Dekker C. 2009. Bacterial growth and motility in sub-micron constrictions. PNAS 106:14861–66
    [Google Scholar]
  43. 43. 
    Marathe R, Meel C, Schmidt NC, Dewenter L, Kurre R et al. 2014. Bacterial twitching motility is corrdinated by a two-dimensional tug-of-war with directional memory. Nat. Commun. 5:3759
    [Google Scholar]
  44. 44. 
    Martínez-García R, Nadell CD, Hartmann R, Drescher K, Bonachela JA. 2018. Cell adhesion and fluid flow jointly initiate genotype spatial distribution in biofilms. PLOS Comput. Biol. 14:e1006094
    [Google Scholar]
  45. 45. 
    Matz C, Bergfeld T, Rice SA, Kjelleberg S. 2004. Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ. Microbiol. 6:218–26
    [Google Scholar]
  46. 46. 
    Merz AJ, So M, Sheetz MP. 2000. Pilus retraction powers bacterial twitching motility. Nature 407:98–102
    [Google Scholar]
  47. 47. 
    Müller MJ, Klumpp S, Lipowsky R. 2008. Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. PNAS 105:4609–14
    [Google Scholar]
  48. 48. 
    Müller S, Strack SN, Ryan SE, Kearns DB, Kirby JR. 2015. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures. Appl. Environ. Microb. 81:203–10
    [Google Scholar]
  49. 49. 
    Ng D, Harn T, Altindal T, Kolappan S, Marles JM et al. 2016. The Vibrio cholerae minor pilin TcpB initiates assembly and retraction of the toxin-coregulated pilus. PLOS Pathog 12:e1006109
    [Google Scholar]
  50. 50. 
    Oldewurtel ER, Kouzel N, Dewenter L, Henseler K, Maier B. 2015. Differential interaction forces govern bacterial sorting in early biofilms. eLife 4:e10811
    [Google Scholar]
  51. 51. 
    Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z. 2015. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. PNAS 112:7563–68
    [Google Scholar]
  52. 52. 
    Peruani F, Starruß J, Jakovljevic V, Søgaard-Andersen L, Deutsch A, Bar M. 2012. Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria. Phys. Rev. Lett. 108:098102
    [Google Scholar]
  53. 53. 
    Pönisch W, Eckenrode KB, Alzurqa K, Nasrollahi H, Weber C et al. 2018. Pili mediated intercellular forces shape heterogeneous bacterial microcolonies prior to multicellular differentiation. Sci. Rep. 8:16567
    [Google Scholar]
  54. 54. 
    Pönisch W, Weber CA, Juckeland G, Biais N, Zaburdaev V. 2017. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates. New J. Phys. 19:015003
    [Google Scholar]
  55. 55. 
    Porter MK, Steinberg AP, Ismagilov RF. 2019. Interplay of motility and polymer-driven depletion forces in the initial stages of bacterial aggregation. Soft Matter 15:7071–79
    [Google Scholar]
  56. 56. 
    Ribbe J, Baker AE, Euler S, O'Toole GA, Maier B 2017. Role of cyclic di-GMP and exopolysaccharide in type IV pilus dynamics. J. Bacteriol. 199:e00859–16
    [Google Scholar]
  57. 57. 
    Rojas ER, Huang KC. 2018. Regulation of microbial growth by turgor pressure. Curr. Opin. Microbiol. 42:62–70
    [Google Scholar]
  58. 58. 
    Sanfilippo JE, Lorestani A, Koch MD, Bratton BP, Siryaporn A et al. 2019. Microfluidic-based transcriptomics reveal force-dependent bacterial rheosensing. Nat. Microbiol. 4:1274–81
    [Google Scholar]
  59. 59. 
    Schwarz-Linek J, Valeriani C, Cacciuto A, Cates ME, Marenduzzo D et al. 2012. Phase separation and rotor self-assembly in active particle suspensions. PNAS 109:4052–57
    [Google Scholar]
  60. 60. 
    Schwarz-Linek J, Winkler A, Wilson LG, Pham NT, Schilling T, Poon WCK. 2010. Polymer-induced phase separation in Escherichia coli suspensions. Soft Matter 6:4540–49
    [Google Scholar]
  61. 61. 
    Secor PR, Michaels LA, Ratjen A, Jennings LK, Singh PK. 2018. Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa. PNAS 115:10780–85
    [Google Scholar]
  62. 62. 
    Seminara A, Angelini TE, Wilking JN, Vlamakis H, Ebrahim S et al. 2012. Osmotic spreading by Bacillus subtilis biofilms driven by an extracellular matrix. PNAS 109:1116–21
    [Google Scholar]
  63. 63. 
    Skerker JM, Berg HC. 2001. Direct observation of extension and retraction of type IV pili. PNAS 98:6901–4
    [Google Scholar]
  64. 64. 
    Smith WPJ, Davit Y, Osborne JM, Kim W, Foster KR, Pitt-Francis JM. 2017. Cell morphology drives spatial patterning in microbial communities. PNAS 114:E280–86
    [Google Scholar]
  65. 65. 
    Steinberg MS. 1963. Reconstruction of tissues by dislocated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141:401–8
    [Google Scholar]
  66. 66. 
    Trinschek S, John K, Lecuyer S, Thiele U. 2017. Continuous versus arrested spreading of biofilms at solid-gas interfaces: the role of surface forces. Phys. Rev. Lett. 119:078003
    [Google Scholar]
  67. 67. 
    Volfson D, Cookson S, Hasty J, Tsimring LS. 2008. Biomechanical ordering of dense cell populations. PNAS 105:15346–51
    [Google Scholar]
  68. 68. 
    Wang X, Stone HA, Golestanian R. 2017. Shape of the growing front of biofilms. New J. Phys. 19:125007
    [Google Scholar]
  69. 69. 
    Warren MR, Sun H, Yan Y, Cremer J, Li B, Hwa T. 2019. Spatiotemporal establishment of dense bacterial colonies growing on hard agar. eLife 8:e41093
    [Google Scholar]
  70. 70. 
    Weber CA, Lin YT, Biais N, Zaburdaev V. 2015. Formation and dissolution of bacterial colonies. Phys. Rev. E 92:032704
    [Google Scholar]
  71. 71. 
    Welker A, Cronenberg T, Zöllner R, Meel C, Siewering K et al. 2018. Molecular motors govern liquidlike ordering and fusion dynamics of bacterial colonies. Phys. Rev. Lett. 121:118102
    [Google Scholar]
  72. 72. 
    Xavier JB, Foster KR. 2007. Cooperation and conflict in microbial biofilms. PNAS 104:876–81
    [Google Scholar]
  73. 73. 
    Yan J, Nadell CD, Stone HA, Wingreen NS, Bassler BL. 2017. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nat. Commun. 8:327
    [Google Scholar]
  74. 74. 
    Yan J, Sharo AG, Stone HA, Wingreen NS, Bassler BL. 2016. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. PNAS 113:E5337–43
    [Google Scholar]
  75. 75. 
    You ZH, Pearce DJG, Sengupta A, Giomi L. 2018. Geometry and mechanics of microdomains in growing bacterial colonies. Phys. Rev. X 8:031065
    [Google Scholar]
  76. 76. 
    You ZH, Pearce DJG, Sengupta A, Giomi L. 2019. Mono- to multilayer transition in growing bacterial colonies. Phys. Rev. Lett. 123:178001
    [Google Scholar]
  77. 77. 
    Zahir T, Wilmaerts D, Franke S, Weytjens B, Camacho R et al. 2020. Image-based dynamic phenotyping reveals genetic determinants of filamentation-mediated β-lactam tolerance. Front. Microbiol. 11:374
    [Google Scholar]
  78. 78. 
    Zhang HP, Be'er A, Florin E-L, Swinney HL. 2010. Collective motion and density fluctuations in bacterial colonies. PNAS 107:13626–30
    [Google Scholar]
  79. 79. 
    Zöllner R, Cronenberg T, Kouzel N, Welker A, Koomey M, Maier B. 2019. Type IV pilin post-translational modifications modulate material properties of bacterial colonies. Biophys. J. 116:938–47
    [Google Scholar]
  80. 80. 
    Zöllner R, Oldewurtel ER, Kouzel N, Maier B. 2017. Phase and antigenic variation govern competition dynamics through positioning in bacterial colonies. Sci. Rep. 7:12151
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-062920-063646
Loading
/content/journals/10.1146/annurev-biophys-062920-063646
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error