Skip to main content
Log in

Colloidal synthesis of monodisperse ultrathin LiFePO4 nanosheets for Li-ion battery cathodes

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Lithium-ion conductivity is one of the critical factors in improving the rate capability of LiFePO4 in lithium-ion batteries. The one-dimensional diffusion pathway of lithium ions slows the charging/discharging rates in the olivine structure of LiFePO4. Herein, ultrathin LiFePO4 nanosheets were synthesized using surface-passivating ligands to address the rate capability issue. The thickness direction of the nanosheets is the [010] direction in which the lithium ions are inserted or extracted during cycling. The structural and morphological characterizations were performed via transmission electron microscopy and X-ray diffraction. A thickness of 7.5nm was obtained from the atomic force microscopy height profiles, which is in the scale of twelve unit cells of LiFePO4. Electrochemical performance test results revealed that the Li-ion batteries had superior rate capability during the charging/discharging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lim, J. Chun, C. Jo and J. Hwang, Korean J. Chem. Eng., In press (2021).

  2. D. Kwak, W.-G. Lim, K. Shin, I. W. Cheong, J. Lee and J. Joo, Korean J. Chem. Eng., 37, 1258 (2020).

    Article  CAS  Google Scholar 

  3. A. Yamada, S. C. Chung and K. Hinokuma, J. Electrochem. Soc., 148, A224 (2001).

    Article  CAS  Google Scholar 

  4. J. Wang and X. Sun, Energy Environ. Sci., 5, 5163 (2012).

    Article  CAS  Google Scholar 

  5. A. Michel, J. B. Goodenough, A. K. Padhi, K. S. Nanjundaswamy and C. Masquelier, US Patent, 6,514,640 (2003).

  6. J. Wang and X. Sun, Energy Environ. Sci., 5, 5163 (2012).

    Article  CAS  Google Scholar 

  7. P. P. Prosini, M. Lisi, D. Zane and M. Pasquali, Solid State Ionics, 148, 45 (2002).

    Article  CAS  Google Scholar 

  8. L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang and J. B. Goodenough, Energy Environ. Sci., 4, 269 (2011).

    Article  CAS  Google Scholar 

  9. R. Malik, D. Burch, M. Bazant and G. Ceder, Nano Lett., 10, 4123 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. C. Yang, D. J. Lee, H. Kim, K. Kim, J. Joo, W. B. Kim, Y. B. Song, Y. S. Jung and J. Park, RSC Adv., 9, 13714 (2019).

    Article  CAS  Google Scholar 

  11. K. Saravanan, P. Balaya, M. V. Reddy, B. V. R. Chowdari and J. J. Vittal, Energy Environ. Sci., 3, 457 (2010).

    Article  CAS  Google Scholar 

  12. C. Delacourt, P. Poizot, S. Levasseur and C. Masquelier, Electrochem. Solid-State Lett., 9, A352 (2006).

    Article  CAS  Google Scholar 

  13. Y. Zhao, L. Peng, B. Liu and G. Yu, Nano Lett., 14, 2849 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. A. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon and W. van Schalkwijk, Nat. Mater., 4, 366 (2005).

    Article  PubMed  Google Scholar 

  15. P. G. Bruce, B. Scrosati and J.-M. Tarascon, Angew. Chem. Int. Ed., 47, 2930 (2008).

    Article  CAS  Google Scholar 

  16. L. Wang, X. He, W. Sun, J. Wang, Y. Li and S. Fan, Nano Lett., 12, 5632 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. X. Rui, X. Zhao, Z. Lu, H. Tan, D. Sim, H. H. Hng, R. Yazami, T. M. Lim and Q. Yan, ACS Nano, 7, 5637 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Y. Zhao, L. Peng, B. Liu and G. Yu, Nano Lett., 14, 2849 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. A. Paolella, G. Bertoni, S. Marras, E. Dilena, M. Colombo, M. Prato, A. Riedinger, M. Povia, A. Ansaldo, K. Zaghib, L. Manna and C. George, Nano Lett., 14, 6828 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993).

    Article  CAS  Google Scholar 

  21. M. A. Boles, D. Ling, T. Hyeon and D. V. Talapin, Nat. Mater., 15, 141 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, Nature, 404, 59 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. J. Joo, J. S. Son, S. G. Kwon, J. H. Yu and T. Hyeon, J. Am. Chem. Soc., 128, 5632 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. F. Gerdes, C. Navío, B. H. Juárez and C. Klinke, Nano Lett., 17, 4165 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. C. A. J. Fisher and M. S. Islam, J. Mater. Chem., 18, 1209 (2008).

    Article  CAS  Google Scholar 

  26. T. Hyeon, S. S. Lee, J. Park, Y. Chung and H. B. Na, J. Am. Chem. Soc., 123, 12798 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang and T. Hyeon, Nat. Mater., 3, 891 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. F. Wang and X. Wang, Nanoscale, 6, 6398 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. S. A. Morin, A. Forticaux, M. J. Bierman and S. Jin, Nano Lett., 11, 4449 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. S. Ahmed, M. Bianchini, A. Pokle, M. S. Munde, P. Hartmann, T. Brezesinski, A. Beyer, J. Janek and K. Volz, Adv. Energy Mater., 10, 2001026 (2020).

    Article  CAS  Google Scholar 

  31. Y. Jin, N. Li, C. H. Chen and S. Q. Wei, Electrochem. Solid-State Lett., 9, A273 (2006).

    Article  CAS  Google Scholar 

  32. S.-X. Zhao, H. Ding, Y.-C. Wang, B.-H. Li and C.-W. Nan, J. Alloys Compd., 566, 206 (2013).

    Article  CAS  Google Scholar 

  33. P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.-M. Tarascon and C. Masquelier, Nat. Mater., 7, 741 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. X. Zhang, M. van Hulzen, D. P. Singh, N. H. van Dijk and M. Wagemaker, Nat. Commun., 6, 8333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Paolella, G. Bertoni, E. Dilena, S. Marras, A. Ansaldo, L. Manna and C. George, Nano Lett., 14, 1477 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Ministry of Trade, Industry and Energy, Republic of Korea (Grant No. 20012453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, H.H., Joo, J. Colloidal synthesis of monodisperse ultrathin LiFePO4 nanosheets for Li-ion battery cathodes. Korean J. Chem. Eng. 38, 1052–1058 (2021). https://doi.org/10.1007/s11814-021-0772-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0772-x

Keywords

Navigation