Skip to main content
Log in

Optimum synthesis of esomeprazole catalyzed by Rhodococcus rhodochrous ATCC 4276 through response surface methodology

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Enantiopure esomeprazole is an important drug in the treatment of gastric ulcer. The asymmetric sulfoxidation of omeprazole thioether was catalyzed by immobilized cells of a mutant of Rhodococcus rhodocrous ATCC 4276 to synthesize esomeprazole. The bioreaction was carried out in a biphasic system (chloroform-water), at a high substrate concentration (200 mM), and optimized using response surface methodology (RSM). The optimal yield of esomeprazole obtained was 94.8% with e.e. (>99%) without the formation of the sulfone form as a byproduct, under the optimal conditions: the concentration of immobilized cells, 283.5 g/L, the incubation temperature, 37.05 °C, and pH of phosphate buffer, 7.35, respectively. A quadratic polynomial model was developed with R2 of 0.9998, which indicates that the model predicts the observed data with very high accuracy. The mutant exhibited a high enantioselective activity and substrate and product tolerance. The small size of immobilized cell beads (0.5–1 mm) creates a large reaction interface. The aerated flask provides enough oxygen for a high concentration of cells. The significant improvement of substrate tolerance may mainly be attributed to employing the chloroform-water biphasic system because organic substrates may be partitioned in the organic phase, eliminating potential damage and inhibition to cells. Based on the above, the asymmetric sulfoxidation catalyzed by immobilized bacterial cells is therefore more promising for efficient synthesis of chiral sulfoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Pai and N. Pai, J. Indian Med. Assoc., 105, 469 (2007).

    PubMed  Google Scholar 

  2. D. T. Andersson and L. Weidolf, Clin. Drug Invest., 28, 263 (2008).

    Article  CAS  Google Scholar 

  3. G. Maitro, G. Prestat, D. Madec and G. Poli, Tetrahedron: Asymmetry, 21, 1075 (2010).

    Article  CAS  Google Scholar 

  4. M. Delamare, S. Belot, J.-C. Caille, F. Martinet, H. B. Kagan and V Henryon, Tetrahedron Lett., 50, 1702 (2009).

    Article  CAS  Google Scholar 

  5. W. Adam, M. N. Korb, K. J. Roschmann and C. R. Saha-Möller, J. Org. Chem., 63, 3423 (1998).

    Article  CAS  Google Scholar 

  6. V. M. Dembitsky, Tetrahedron, 26, 4701 (2003).

    Article  CAS  Google Scholar 

  7. N. M. Kamerbeek, A. J. J. Olsthoorn, M. W. Fraaije and D. B. Janssen, Appl. Environ. Microbiol., 69, 419 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. F. Zambianchi, M. W. Fraaije, G. Carrea, G. de Gonzalo, C. Rodríguez, V Gotor and G. Ottolina, Adv. Synth. Catal., 349, 1327 (2007).

    Article  CAS  Google Scholar 

  9. M. P. J. Van Deurzen, F. van Rantwijk and R. A. Sheldon, Tetrahedron, 53, 13183 (1997).

    Article  CAS  Google Scholar 

  10. S. Colonna, N. Gaggero, C. Richelmi and P. Pasta, Trends Biotechnol., 17, 163 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. W. Adam, F. Heckel, C. R. Saha-Möller and P. Schreier, J. Organomet. Chem., 661, 17 (2002).

    Article  CAS  Google Scholar 

  12. S. V. Dzyuba and A. M. Klibanov, Biotechnol. Lett., 25, 1961 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. S. I. Ozaki, T. Matsui and Y. Watanabe, J. Am. Chem. Soc., 119, 6666 (1997).

    Article  CAS  Google Scholar 

  14. R. Akasaka, T. Mashino and M. Hirobe, Arch. Biochem. Biophys., 301, 355 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. J. D. Carballeira, M. A. Quezada, P. Simeó, M. J. Hernaiz, A. R. Alcantara and J. V. Sinisterra, Biotechnol. Adv., 27, 686 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. H. F. Olivo, A. Osoriolozada, T. L. Peeples and J. Tetasy, Tetrahedron Asymmetry, 16, 3507 (2005).

    Article  CAS  Google Scholar 

  17. C. Pinedo-Rivilla, J. Aleu and I. G. Collado, J. Mol. Catal. B Enzym., 49, 18 (2007).

    Article  CAS  Google Scholar 

  18. L. C. Ricci, J. V Comasseto, L. H. Andrade, M. Capelari, Q. B. Cass and A. L. M. Porto, Enzym. Microb. Technol., 36, 937 (2005).

    Article  CAS  Google Scholar 

  19. K. B. Borges, W. de Souza Borges, R. Durán-Patrón, M. T. Pupo, P. S. Bonato and I. G. Collado, Tetrahedron: Asymmetry, 20, 385 (2009).

    Article  CAS  Google Scholar 

  20. A.-T. Li, H.-L. Yu, J. Pan, J.-D. Zhang, J.-H. Xu and G.-Q. Lin, Bioresour. Technol., 102, 1537 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. A. A. Elkin, T. I. Kylosova, V. V. Grishko and I. B. Ivshina, J. Mol. Catal. B Enzym., 89, 82 (2013).

    Article  CAS  Google Scholar 

  22. R. Holt, P. Lindberg, C. Reeve and S. Taylor, US Patent, 5,840,552 (1998).

  23. T. Yoshida, M. Kito, M. Tsujii and T. Nagasawa, Biotechnol. Lett., 23, 1217 (2001).

    Article  CAS  Google Scholar 

  24. A. T. Li, J. D. Zhang, H. L. Yu, J. Pan and J. H. Xu, Process Biochem., 46, 689 (2011).

    Article  CAS  Google Scholar 

  25. A. A. ElKin, V. V. Grishko and I. B. Ivshina, Appl. Biochem. Microbiol., 46, 586 (2010).

    Article  CAS  Google Scholar 

  26. M. S. Kuyukina, I. B. Ivshina, A. Y. Gavrin, E. A. Podorozhko and J. C. Philp, J. Microbiol. Methods, 65, 596 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. H. L. Holland, S. Poddar and B. Tripet, J. Ind. Microbiol., 10, 195 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. A. L. M. Porto, F. Cassiola, S. L. P. Dias, I. Joekes, Y. Gushikem, J. A. R. Rodrigues, P. J. S. Moran, G. P. Manfio and A. J. Marsaioli, J. Mol. Catal. B: Enzym., 19–20, 327 (2002).

    Article  Google Scholar 

  29. P. F. Gong and J. H. Xu, Enzym. Microb. Technol., 36, 252 (2005).

    Article  CAS  Google Scholar 

  30. J. Y. He, Z. H. Sun, W. Q. Ruan and Y. Xu, Process Biochem., 41, 244 (2006).

    Article  CAS  Google Scholar 

  31. H. Kansal and U. C. Banerjee, Bioresour. Technol., 100, 1041 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. M. Seenivasaperumal, H.-J. Federsel and K. Szab, Adv. Synth. Catal., 351, 903 (2010).

    Article  CAS  Google Scholar 

  33. H. L. Holland, C. G. Rand, P. Viski and F. M. Brown, Can. J. Chem., 69, 1989 (1991).

    Article  CAS  Google Scholar 

  34. E. V. Tarasova, V. V. Grishko and I. B. Ivshina, Process Biochem., 52, 1 (2016).

    Article  CAS  Google Scholar 

  35. C. Aguirre-Pranzoni, F. R. Bisogno, A. A. Orden and M. Kurina-Sanz, J. Mol. Catal. B Enzym., 114, 19 (2015).

    Article  CAS  Google Scholar 

  36. V. V. Grishko, E. V. Tarasova and I. B. Ivshina, Process Biochem., 48, 1640 (2013).

    Article  CAS  Google Scholar 

  37. G. De Gonzalo, M. L. Mascotti, A. A. Orden, F. R. Bisogno and M. Kurina-Sanz, J. Mol. Catal. B Enzym., 82, 32 (2012).

    Article  CAS  Google Scholar 

  38. H. L. Holland, F. M. Brown, B. G. Larsen and M. Zabic, Tetrahedron: Asymmetry, 6, 1569 (1995).

    Article  CAS  Google Scholar 

  39. J. B. Bhasarkar, P. K. Dikshit and V. S. Moholkar, Bioresour. Technol., 187, 369 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Y. C. He, C. L. Ma, Z. X. Yang, M. Zhou, Z. Xing, J. T. Ma and H. L. Yu, Appl. Microbiol. Biotechnol., 97, 10329 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Y. C. He, Q. Zhou, C. L. Ma, Z. Q. Cai, L. Q. Wang, X. Y. Zhao, Q. Chen, D. Z. Gao, M. Zheng and X. D. Wang, Bioresour. Technol., 115, 88 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Y. N. Li, X. A. Shi, M. H. Zong, C. Meng, Y. Q. Dong and Y. H. Guo, Enzyme Microb. Technol., 40(5), 1305 (2007).

    Article  CAS  Google Scholar 

  43. W. Y. Lou, M. H. Zong and T. J. Smith, Green Chem., 8, 147 (2006).

    Article  CAS  Google Scholar 

  44. G. V. Waghmare, A. Chatterji and V. K. Rathod, Appl. Biochem. Biotechnol., 183, 792 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Y. J. Kim and J. A. Nicell, J. Chem. Technol. Biotechnol., 81, 1344 (2006).

    Article  CAS  Google Scholar 

  46. A. S. de Miranda, L. S. M. Miranda and R. O. M. A. de Souza, Biotechnol. Adv., 33, 372 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. A. C. Mathpati, K. C. Badgujar and B. M. Bhanage, Enzyme Microb. Technol., 84, 1 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. D.-H. Luo, M.-H. Zong and J.-H. Xu, J. Mol. Catal. B Enzym., 24, 83 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from China Scholarship Council (grant number: 201908370079) and Shandong Provincial Key R&D Program [grant numbers 2019GSF107027, 2019GNC106028 and 2019GSF107033].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyuan Zhang or Xin Gao.

Additional information

Conflicts of Interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, Q., Tang, H. et al. Optimum synthesis of esomeprazole catalyzed by Rhodococcus rhodochrous ATCC 4276 through response surface methodology. Korean J. Chem. Eng. 38, 989–996 (2021). https://doi.org/10.1007/s11814-021-0757-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0757-9

Keywords

Navigation