Skip to main content

Advertisement

Log in

Foliar Stoichiometry is Marginally Sensitive to Soil Phosphorus Across a Lowland Tropical Rainforest

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The distribution of nutrients, both vertically and horizontally in a forest, has long been theorized to influence primary productivity. Working at La Selva Biological Station, Costa Rica, we gathered the most comprehensive foliar samples to date for a lowland tropical rainforest to measure horizontal and vertical trends in foliar nutrients. The mean traits of foliage from forest floor to top-of-canopy were determined at 45 plots placed across the landscape in a stratified random design. Area-basis foliar N and P for these vertically integrated columns varied by a factor of 3, while foliar N:P and mass-basis foliar N and P varied by a factor of 2. The variance in plot-level foliar N:P and P was best explained by total soil P, while variance in foliar N was best explained by soil pH (regression trees: r2 \(\ge \) 0.20, p \(\le \) 0.01). Other soil, topographic, and forest structure factors offered no additional explanatory power for variation of foliar nutrients from plot to plot. To explore vertical trends, we aggregated the data across the landscape into ~ 2 m vertical segments. We found that foliar N:P was unrelated to height in the canopy, and that area-basis foliar N and P increased with height in the canopy (linear regression: r2 = 0.82 and r2 = 0.65 respectively, p < 0.0001 for both). We compared these vertical trends to those of the eight other elements quantified in the leaves, and the only other element enriched with height was potassium (K). Vertical nutrient enrichment was driven by increases in leaf mass per area (LMA), not mass-basis concentrations. Altogether, these findings suggest that, even in diverse tropical rainforests, foliar chemistry may reflect environmental constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adriaenssens S, Hansen K, Staelens J, Wuyts K, De Schrijver A, Baeten L, Boeckx P, Samson R, Verheyen K. 2012. Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Sci Total Environ 420:168–182.

    Article  CAS  PubMed  Google Scholar 

  • Albert LP, Wu J, Prohaska N, de Camargo PB, Huxman TE, Tribuzy ES, Ivanov VY, Oliveira RS, Garcia S, Smith MN, Oliveira Junior RC, Restrepo-Coupe N, da Silva R, Stark SC, Martins GA, Penha DV, Saleska SR. 2018. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest. New Phytol 219:870–884.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Clare S, Mack MC, Brooks M. 2013. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94:1540–1551.

    Article  CAS  PubMed  Google Scholar 

  • Asner GP, Martin RE. 2012. Contrasting leaf chemical traits in tropical lianas and trees: implications for future forest composition. Ecol Lett 15:1001–1007.

    Article  PubMed  Google Scholar 

  • Asner GP, Martin RE. 2016. Convergent elevation trends in canopy chemical traits of tropical forests. Glob Change Biol 22:2216–2227.

    Article  Google Scholar 

  • Asner GP, Anderson CB, Martin RE, Tupayachi R, Knapp DE, Sinca F. 2015a. Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy. Nat Geosci 8:567–573.

    Article  CAS  Google Scholar 

  • Asner GP, Martin RE, Anderson CB, Knapp DE. 2015b. Quantifying forest canopy traits: Imaging spectroscopy versus field survey. Remote Sens Environ 158:15–27.

    Article  Google Scholar 

  • Awmack CS, Leather SR. 2002. Host Plant Quality and Fecundity in Herbivorous Insects. Annu Rev Entomol 47:817–844.

    Article  CAS  PubMed  Google Scholar 

  • Balzotti CS, Asner GP, Taylor PG, Cleveland CC, Cole R, Martin RE, Nasto M, Osborne BB, Porder S, Townsend AR. 2016. Environmental controls on canopy foliar nitrogen distributions in a Neotropical lowland forest. Ecol Appl 26:2451–2464.

    Article  Google Scholar 

  • Bern CR, Townsend AR, Farmer GL. 2005. Unexpected Dominance of Parent-Material Strontium in a Tropical Forest on Highly Weathered Soils. Ecology 86:626–632.

    Article  Google Scholar 

  • Bonan GB. 2008. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 320:1444–1449.

    Article  CAS  PubMed  Google Scholar 

  • Bond BJ, Farnsworth BT, Coulombe RA, Winner WE. 1999. Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance. Oecologia 120:183–192.

    Article  PubMed  Google Scholar 

  • Bordeleau L, Prévost D. 1994. Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115–125.

    Article  CAS  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone C. 1983. Classification and Regression Trees. Belmont, CA: Wadsworth.

    Google Scholar 

  • Cámara-Leret R, Tuomisto H, Ruokolainen K, Balslev H, Munch Kristiansen S. 2017. Modelling responses of western Amazonian palms to soil nutrients. Wurzburger N, editor. J Ecol 105:367–381.

    Article  Google Scholar 

  • Cavaleri MA, Oberbauer SF, Ryan MG. 2008. Foliar and ecosystem respiration in an old-growth tropical rain forest. Plant Cell Environ 31:473–483.

    Article  CAS  PubMed  Google Scholar 

  • Cavaleri MA, Oberbauer SF, Clark DB, Clark DA, Ryan MG. 2010. Height is more important than light in determining leaf morphology in a tropical forest. Ecology 91:1730–1739.

    Article  PubMed  Google Scholar 

  • Clark DB, Olivas PC, Oberbauer SF, Clark DA, Ryan MG. 2008. First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity. Ecol Lett 0:163–72.

  • Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Wieder WR. 2011. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis: Nutrients, climate and tropical NPP. Ecol Lett 14:939–947.

    Article  PubMed  Google Scholar 

  • Cochran W. 1977. Sampling Techniques, 3rd edn. New York: Wiley.

    Google Scholar 

  • Comita L, Uriarte M, Forero-Montaña J, Kress W, Swenson N, Thompson J, Umaña M, Zimmerman J. 2018. Changes in Phylogenetic Community Structure of the Seedling Layer Following Hurricane Disturbance in a Human-Impacted Tropical Forest. Forests 9:556.

    Article  Google Scholar 

  • Cuevas E, Medina E. 1986. Nutrient dynamics with in Amazonian forest ecosystems: I. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia 68:466–472.

    Article  CAS  PubMed  Google Scholar 

  • Cushman KC, Kellner JR. 2019. Prediction of forest aboveground net primary production from high-resolution vertical leaf-area profiles. Uriarte M, editor. Ecol Lett 22:538–546.

    Article  CAS  PubMed  Google Scholar 

  • De’Ath G, Fabricius KE. . 2000. Classification and Regression Trees: A Powerful Yet Simple Technique for Ecological Data Analysis. Ecology 81:3178–3192.

    Article  Google Scholar 

  • Delitti WBC, Burger DM. 2000. Carbon and mineral nutrient pools in a gallery forest at Mogi Guaçu River, Southeast Brazil. Ann For Sci:39–47.

  • Emanuel K. 2017. Assessing the present and future probability of Hurricane Harvey’s rainfall. Proc Natl Acad Sci 114:12681–12684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E, Bloom A. 2005. Mineral Nutrition of Plants, 2nd edn. Sunderland, MA: Sinauer Associates Inc.

    Google Scholar 

  • Espeleta JF, Clark DA. 2007. Multi-scale variation in fine-root biomass in a tropical rain forest: a seven-year study. Ecol Monogr 77:377–404.

    Article  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V. 1998. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science 281:200–206.

    Article  CAS  PubMed  Google Scholar 

  • Field C. 1983. Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program. Oecologia 56:341–347.

    Article  CAS  PubMed  Google Scholar 

  • Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172:889–902.

    Article  PubMed  Google Scholar 

  • Fraza E, Elsner JB. 2013. A spatial climatology of North Atlantic hurricane intensity change. Int J Climatol 34:2918–2124.

    Article  Google Scholar 

  • Fyllas NM, Schwarz M, Horna V, Mercado LM, Santos A, Arroyo L, Jimenez EM, Luizao FJ, Neill DA, Silva N, Prieto A, Rudas A, Silviera M, Vieira ICG, Lopez-Gonzalez G, Malhi Y, Phillips OL, Lloyd J. 2009. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708.

    Article  Google Scholar 

  • Gatz DF, Smith L. 1995. The standard error of a weighted mean concentration—I. Bootstrapping vs other methods. Atmos Environ 29:1185–1193.

    CAS  Google Scholar 

  • Golley F. 1975. Mineral cycling in a tropical moist forest ecosystem, 1st edn. Athens, GA: University of Georgia Press.

    Google Scholar 

  • Grubb PJ, Edwards PJ. 1982. Studies of Mineral Cycling in a Montane Rain Forest in New Guinea: III. The Distribution of Mineral Elements in the Above-Ground Material. J Ecol 70:623–648.

    Article  CAS  Google Scholar 

  • Guo Y, Yan Z, Gheyret G, Zhou G, Xie Z, Tang Z. 2020. The community-level scaling relationship between leaf nitrogen and phosphorus changes with plant growth, climate and nutrient limitation. Wardle D, editor. J Ecol:1365–2745.13369.

  • Harrell F, Dupont C. 2020. Hmisc. https://CRAN.R-project.org/package=Hmisc

  • Hartshorn G. 1983. Species Accounts: Pentaclethra macroloba. In: Costa Rican Natural History. pp 301–3.

  • Hikosaka K, Anten NPR, Borjigidai A, Kamiyama C, Sakai H, Hasegawa T, Oikawa S, Iio A, Watanabe M, Koike T, Nishina K, Ito A. 2016. A meta-analysis of leaf nitrogen distribution within plant canopies. Ann Bot 118:239–247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirose T, Werger MJA. 1987. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72:520–526.

    Article  CAS  PubMed  Google Scholar 

  • Houlton BZ, Wang Y-P, Vitousek PM, Field CB. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330.

    Article  CAS  PubMed  Google Scholar 

  • Isles PDF. 2020. The misuse of ratios in ecological stoichiometry. Ecology 101:1–7.

    Article  Google Scholar 

  • Kellner JR, Clark DB, Hofton MA. 2009. Canopy height and ground elevation in a mixed-land-use lowland Neotropical rain forest landscape: E090–233. Ecology 90:3274–3274.

    Article  Google Scholar 

  • Kitao M, Kitaoka S, Harayama H, Tobita H, Agathokleous E, Utsugi H. 2018. Canopy nitrogen distribution is optimized to prevent photoinhibition throughout the canopy during sun flecks. Sci Rep 8:503.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koerselman W, Meuleman AFM. 1996. The Vegetation N: P Ratio: a New Tool to Detect the Nature of Nutrient Limitation. J Appl Ecol 33:1441–1450.

    Article  Google Scholar 

  • Konvalinková T, Jansa J. 2016. Lights Off for Arbuscular Mycorrhiza: On Its Symbiotic Functioning under Light Deprivation. Front Plant Sci 7.

  • Leuning R, Cromer RN, Rance S. 1991. Spatial distributions of foliar nitrogen and phosphorus in crowns of Eucalyptus grandis. Oecologia 88:504–510.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd J, Patiño S, Paiva RQ, Nardoto GB, Quesada CA, Santos AJB, Baker TR, Brand WA, Hilke I, Gielmann H, Raessler M, Luizão FJ, Martinelli LA, Mercado LM. 2010. Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences 7:1833–1859.

    Article  CAS  Google Scholar 

  • Lloyd J, Bloomfield K, Domingues TF, Farquhar GD. 2013. Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytol 199:311–321.

    Article  CAS  PubMed  Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO. 2004. Scaling of C:N: P Stoichiometry in Forests Worldwide: Implications of Terrestrial Redfield-Type Ratios. Ecology 85:2390–2401.

    Article  Google Scholar 

  • McKenzie, Jacquier, Isbell, Brown. 2004. Australian soils and landscapes: an illustrated compendium.

  • Menge DNL, Chazdon RL. 2016. Higher survival drives the success of nitrogen-fixing trees through succession in Costa Rican rainforests. New Phytol 209:965–977.

    Article  CAS  PubMed  Google Scholar 

  • Mercer FV, Nittim M, Possingham JV. 1962. The effect of Manganese deficiency on the structure of spinach chloroplasts. J Cell Biol 15:379–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niinemets Ü, Keenan TF, Hallik L. 2015. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol 205:973–993.

    Article  CAS  PubMed  Google Scholar 

  • Osnas JLD, Lichstein JW, Reich PB, Pacala SW. 2013. Global Leaf Trait Relationships: Mass, Area, and the Leaf Economics Spectrum. Science 340:741–744.

    Article  CAS  PubMed  Google Scholar 

  • Pasek J, Tahk A, Cutler G, Schwemmle M. 2020. weights. https://CRAN.R-project.org/package=weights

  • Petrie A. 2020. regclass. In: Vol. Version 1.6. https://CRAN.R-project.org/package=regclass/

  • Poorter H, Niinemets Ü, Ntagkas N, Siebenkäs A, Mäenpää M, Matsubara S, ThijsL Pons. 2019. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytol 223:1073–1105.

    Article  CAS  PubMed  Google Scholar 

  • Porder S, Hilley GE. 2011. Linking chronosequences with the rest of the world: predicting soil phosphorus content in denuding landscapes. Biogeochemistry 102:153–166.

    Article  CAS  Google Scholar 

  • Porder S, Ramachandran S. 2013. The phosphorus concentration of common rocks—a potential driver of ecosystem P status. Plant Soil 367:41–55.

    Article  CAS  Google Scholar 

  • Porder S, Asner GP, Vitousek PM. 2005. Ground-based and remotely sensed nutrient availability across a tropical landscape. Proc Natl Acad Sci 102:10909–10912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porder S, Clark DA, Vitousek PM. 2006. Persistence of Rock-Derived Nutrients in the Wet Tropical Forests of La Selva, Costa Rica. Ecology 87:594–602.

    Article  PubMed  Google Scholar 

  • Quesada CA, Lloyd J, Schwarz M, Nardoto GB, Schmerler J, Santos AJB, Hodnett MG, Herrera R, Luizao FJ, Arneth A, Lloyd G, Dezzeo N, Hilke I, Kuhlmann I, Raessler M, Brand WA, Geilmann H, Filho JOM, Carvalho FP, Filho RNA, Chaves JE, Junior OFC, Pimentel TP, Paiva R. 2010. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences Discuss:3923–92.

  • R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Redfield AC. 1958. The Biological Control of Chemical Factors in the Environment. Am Sci 46:230A-A221.

    Google Scholar 

  • Reed SC, Townsend AR, Davidson EA, Cleveland CC. 2012. Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytol 196:173–180.

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci 101:11001–11006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ. 2010. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc R Soc B Biol Sci 277:877–883.

    Article  CAS  Google Scholar 

  • Richardson AD. 2004. Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy light gradient in the mountains of the northeastern United States. Plant Soil 260:291–299.

    Article  CAS  Google Scholar 

  • Richardson SJ, Allen RB, Doherty JE. 2008. Shifts in leaf N: P ratio during resorption reflect soil P in temperate rainforest. Funct Ecol 22:738–745.

    Article  Google Scholar 

  • Sanchez PA. 2019. Properties and Management of Soils in the Tropics, 2nd edn. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Sanford R, Paaby P, Luvall J, Phillips E. 1994. Climate, geomorphology, and aquatic systems. In: McDade L, Bawa K, Hespenheide H, Hartshorn G, Eds. La Selva: Ecology and Natural History of a Neotropical Rain Forest, . Chicago, IL, USA.: University of Chicago Press. pp 19–33.

    Google Scholar 

  • Sardans J, Peñuelas J. 2014. Trees increase their P: N ratio with size: Phosphorus; the treasure nutrient. Glob Ecol Biogeogr 24:147–156.

    Article  Google Scholar 

  • Sardans J, Peñuelas J. 2015. Potassium: a neglected nutrient in global change: Potassium stoichiometry and global change. Glob Ecol Biogeogr 24:261–275.

    Article  Google Scholar 

  • Schlichting E, Blume H, Stahr K. 1995. Bodenkundliches Praktikum. Berlin-Wien: Blackwell Wissenschaftsverlag.

    Google Scholar 

  • Schreeg LA, Santiago LS, Wright SJ, Turner BL. 2014. Stem, root, and older leaf N: P ratios are more responsive indicators of soil nutrient availability than new foliage. Ecology 95:2062–2068.

    Article  CAS  PubMed  Google Scholar 

  • Šímová I, Sandel B, Enquist BJ, Michaletz ST, Kattge J, Violle C, McGill BJ, Blonder B, Engemann K, Peet RK, Wiser SK, Morueta-Holme N, Boyle B, Kraft NJB, Svenning J-C. 2019. The relationship of woody plant size and leaf nutrient content to large-scale productivity for forests across the Americas. J Ecol 00:1–13.

    Google Scholar 

  • Sollins P, Sancho F, Mata R, Sanford R. 1994. Soils and Soil Process Research. In: McDade L, Bawa K, Hespenheide H, Hartshorn G, Eds. La Selva: Ecology and Natural History of a Neotropical Rain Forest, . Chicago, IL, USA.: University of Chicago Press. pp 34–53.

    Google Scholar 

  • Sterner RW, Elser JJ. 2002. Ecological Stoichiometry. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Sullivan BW, Alvarez-Clare S, Castle SC, Porder S, Reed SC, Schreeg L, Townsend AR, Cleveland CC. 2014. Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments. Ecology 95:668–681.

    Article  PubMed  Google Scholar 

  • Takenaka A. 1989. Optimal leaf photosynthetic capacity in terms of utilizing a natural light environment. J Theor Biol 139:517–529.

    Article  Google Scholar 

  • Tao L, Hunter MD. 2011. Effects of Insect Herbivores on the Nitrogen Economy of Plants. In: Ecological Aspects of Nitrogen Metabolism in Plants. Wiley-Blackwell. pp 257–79.

  • Taylor BN, Menge DNL. 2018. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nat Plants 4:655–661.

    Article  CAS  PubMed  Google Scholar 

  • Therneau T, Atkinson B, Ripley B. 2019. rpart. https://CRAN.R-project.org/package=rpart

  • Townsend AR, Cleveland CC, Asner GP, Bustamante MMC. 2007. Controls Over Foliar N: P Ratios in Tropical Rain Forests. Ecology 88:107–118.

    Article  PubMed  Google Scholar 

  • Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JW. 2011. Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ 9:9–17.

    Article  Google Scholar 

  • Tully KL, Wood TE, Schwantes AM, Lawrence D. 2013. Soil nutrient availability and reproductive effort drive patterns in nutrient resorption in Pentaclethra macroloba. Ecology 94:930–940.

    Article  Google Scholar 

  • Turner BL, Brenes-Arguedas T, Condit R. 2018. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555:367–370.

    Article  CAS  PubMed  Google Scholar 

  • Umaña MN, Condit R, Pérez R, Turner B, Wright SJ, Comita LS. 2021. Shifts in taxonomic and functional composition of trees along rainfall and phosphorus gradients in central Panama. J Ecol 109:51–61.

    Article  Google Scholar 

  • Vitousek PM. 1984. Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests. Ecology 65:285–298.

    Article  CAS  Google Scholar 

  • Wickham H, Chang W, Henry L, Lin Pedersen T, Takahashi K, Wilke C, Woo K, Yutani H, Dunnington D. 2020. ggplot2. https://CRAN.R-project.org/package=ggplot2

  • Wickham H, François R, Henry L, Müller K. 2021. dplyr. https://CRAN.R-project.org/package=dplyr

  • Wieczynski D, Díaz S, Duran S, Fyllas N, Salinas N, Martin R, Shenkin A, Silman M, Asner G, Bentley L, Malhi Y, Enquist B, Savage V. 2021. Quantifying productivity at landscape scale using remotely-sensed foliar traits and canopy structure. https://doi.org/10.21203/rs.3.rs-98574/v1

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. 2004. The worldwide leaf economics spectrum. Nature 428:821–827.

    Article  CAS  PubMed  Google Scholar 

  • Wright SJ, Turner BL, Yavitt JB, Harms KE, Kaspari M, Tanner EVJ, Bujan J, Griffin EA, Mayor JR, Pasquini SC, Sheldrake M, Garcia MN. 2018. Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology 99:1129–1138.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the U.S. National Science Foundation (Geosciences #0223284). AM also received funding from the Institute at Brown for Environment and Society. We thank the TOWERS Project field crew and technicians, the laboratory staff and forest technicians Leonel Campos and William Miranda, and OTS, particularly Don Isaías Alvarado for construction advice and Ms. Cynthia Rossi for GIS assistance and LiDAR data processing. Loren Albert, John Burley, KC Cushman, James Kellner, Lindsay McCulloch, and Dafeng Zhang provided helpful feedback on early drafts of the manuscript. We also thank Christian Giardina and two anonymous reviewers for a highly constructive peer review process which greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Massmann.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Author contributions

PCO and SFO designed the field study. MAC and PCO collected samples and performed lab analyses. AM, MAC, and SP analyzed data. AM, MAC, and SP wrote the paper. All authors participated in editing the paper.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massmann, A., Cavaleri, M.A., Oberbauer, S.F. et al. Foliar Stoichiometry is Marginally Sensitive to Soil Phosphorus Across a Lowland Tropical Rainforest. Ecosystems 25, 61–74 (2022). https://doi.org/10.1007/s10021-021-00640-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00640-w

Keywords

Navigation