Skip to main content
Log in

Mitigating the Blunt Trauma of Soft Armour Panels using Polycarbonate Sheets: A Cost-effective Solution

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Reduction of back face signature (BFS) or blunt trauma of soft armour panel (SAP) is one of the major aspects of armour design. This research explores the use of stiff polymeric materials (polycarbonate or PC sheet) to mitigate the BFS of hybrid SAPs. Two sets of SAPs were prepared—the first set comprising of para-aramid based woven fabrics and UD laminates and the second, of ultra-high molecular weight polyethylene (UHMWPE) UD laminates. The areal density of all the panels was within the range of 4.7 ± 0.3 kg m−2. The ballistic performance of SAPs was evaluated in terms of BFS and perforation ratio against a 9 mm × 19 mm lead core bullet fired at 430 m s−1 velocity. The BFS of SAPs reduced when PC sheets were used as backing materials, with a maximum improvement of 27.5% noticed in case of the SAP made from woven para-aramid fabrics. PC sheets were able to replace up to 41% of the high-performance materials thereby reducing the materials cost of armour significantly (38%). The outcome of this research opens up possibilities to replace costly high-performance fabrics with low-cost materials while improving the ballistic performance of SAPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Yadav, R., Naebe, M., Wang, X., Kandasubramanian, B.: Body armour materials: from steel to contemporary biomimetic systems. RSC Adv. 6, 115145–115174 (2016). https://doi.org/10.1039/c6ra24016j

    Article  CAS  Google Scholar 

  2. Crouch, I.G.: Body armour-New materials, new systems. Def. Technol. 15, 241–253 (2019). https://doi.org/10.1016/j.dt.2019.02.002

    Article  Google Scholar 

  3. Liu, X., Li, M., Li, X., Deng, X., Zhang, X., Yan, Y., Liu, Y., Chen, X.: Ballistic performance of UHMWPE fabrics/EAMS hybrid panel. J. Mater. Sci. 53, 7357–7371 (2018). https://doi.org/10.1007/s10853-018-2055-4

    Article  CAS  Google Scholar 

  4. Zhou, Y.: Development of lightweight soft body armour for ballistic protection. Ph.D. thesis (2013). https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:214490&datastreamId=FULL-TEXT.PDF

  5. Edwards, T.D., Bain, E.D., Cole, S.T., Freeney, R.M., Halls, V.A., Ivancik, J., Lenhart, J.L., Napadensky, E., Yu, J.H., Zheng, J.Q., Mrozek, R.A.: Mechanical properties of silicone based composites as a temperature insensitive ballistic backing material for quantifying back face deformation. Forensic Sci. Int. 285, 1–12 (2018). https://doi.org/10.1016/j.forsciint.2018.01.014

    Article  CAS  Google Scholar 

  6. Cha, J.H., Kim, Y.H., Kumar, S.K.S., Choi, C., Kim, C.G.: Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures. Acta Astronaut. 168, 182–190 (2020). https://doi.org/10.1016/j.actaastro.2019.12.008

    Article  CAS  Google Scholar 

  7. Gürgen, S., Kuşhan, M.C., High performance fabrics in body protective systems Mater. Sci. Forum. 880 132-135 (2017). https://doi.org/10.4028/www.scientific.net/MSF.880.132

  8. Toyobo Co. Ltd: Zylon® (PBO fibre) technical information. (2005). http://www.toyobo-global.com/seihin/kc/pbo/zylon-p/bussei-p/technical.pdf

  9. Chae, H.G., Kumar, S.: Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 100, 791–802 (2006). https://doi.org/10.1002/app.22680

    Article  CAS  Google Scholar 

  10. Mawkhlieng, U., Majumdar, A.: Soft body armour. Text. Prog. 51, 139–224 (2020). https://doi.org/10.1080/00405167.2019.1692583

    Article  Google Scholar 

  11. Zeng, H., Yuan, Z., Qiu, J., Chen, X.: Finite Element Study on the Influence of Structural Parameters on the Ballistic Performance of 3D Networked Fabrics. Appl. Compos. Mater. 25, 891–903 (2018). https://doi.org/10.1007/s10443-018-9721-1

    Article  Google Scholar 

  12. Yang, Y., Chen, X.: Determination of materials for hybrid design of 3D soft body armour panels. Appl. Compos. Mater. 25, 861–875 (2018). https://doi.org/10.1007/s10443-018-9716-y

    Article  Google Scholar 

  13. Lin, C.C., Lin, J.H., Chang, C.C.: Fabrication of compound nonwoven materials for soft body armor. J. Forensic Sci. 56, 1150–1155 (2011). https://doi.org/10.1111/j.1556-4029.2011.01832.x

    Article  Google Scholar 

  14. Yang, D., Chen, X., Sun, D., Zhang, S., Yi, C., Gong, X., Zhou, Y., Chen, Y.: Ballistic performance of angle-interlock woven fabrics. J. Text. Inst. 108, 586–596 (2017). https://doi.org/10.1080/00405000.2016.1176622

    Article  CAS  Google Scholar 

  15. Chen, X., Sun, D., Wang, Y., Zhou, Y.: 2D / 3D woven fabrics for ballistic protection. 4th World Conf. 3D Fabr. Their Appl. 1–12 (2012).

  16. Chen, X., Zhou, Y., Wells, G.: Numerical and experimental investigations into ballistic performance of hybrid fabric panels. Compos. Part B Eng. 58, 35–42 (2014). https://doi.org/10.1016/j.compositesb.2013.10.019

    Article  CAS  Google Scholar 

  17. Park, Y., Kim, Y.H., Baluch, A.H., Kim, C.G.: Numerical simulation and empirical comparison of the high velocity impact of STF impregnated Kevlar fabric using friction effects. Compos. Struct. 125, 520–529 (2015). https://doi.org/10.1016/j.compstruct.2015.02.041

    Article  Google Scholar 

  18. Bajya, M., Majumdar, A., Butola, B.S., Verma, S.K., Bhattacharjee, D.: Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid. Compos. Part B. 183, 107721 (2020). https://doi.org/10.1016/j.compositesb.2019.107721

    Article  CAS  Google Scholar 

  19. Mawkhlieng, U., Majumdar, A.: Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics. Compos. Part B Eng. 175, 107167 (2019). https://doi.org/10.1016/J.COMPOSITESB.2019.107167

    Article  CAS  Google Scholar 

  20. Park, J.L., Chi, Y.S., Kang, T.J.: Ballistic performance of hybrid panels composed of uni-directional/woven fabrics. Text. Res. J. 83, 471–486 (2013). https://doi.org/10.1177/0040517512444337

    Article  CAS  Google Scholar 

  21. Gürgen, S.: Numerical modeling of fabrics treated with multi-phase shear thickening fluids under high velocity impacts. Thin-Walled Struct. 148, 106573 (2020). https://doi.org/10.1016/j.tws.2019.106573

    Article  Google Scholar 

  22. Ghosh, A., Majumdar, A., Butola, B.S.: Rheometry of novel shear thickening fluid and its application for improving the impact energy absorption of p-aramid fabric. Thin-Walled Struct. 155, 106954 (2020). https://doi.org/10.1016/j.tws.2020.106954

    Article  Google Scholar 

  23. Liu, L., Yang, Z., Zhao, Z., Liu, X., Chen, W.: The influences of rheological property on the impact performance of kevlar fabrics impregnated with SiO2/PEG shear thickening fluid. Thin-Walled Struct. 151, 106717 (2020). https://doi.org/10.1016/j.tws.2020.106717

    Article  Google Scholar 

  24. Shih, C.H., Chang, C.P., Liu, Y.M., Chen, Y.L., Ger, M.D.: Ballistic performance of shear thickening fluids (STFs) filled paper honeycomb panel: effects of laminating sequence and rheological property of STFs. Appl. Compos. Mater. (2021). https://doi.org/10.1007/s10443-020-09860-0

    Article  Google Scholar 

  25. Gürgen, S., Majumdar, A.: Tuning the Frictional Properties of Carbon Fabrics Using Boron Carbide Particles. Fibers Polym. 20, 725–731 (2019). https://doi.org/10.1007/s12221-019-8493-z

    Article  CAS  Google Scholar 

  26. Gürgen, S., Yıldız, T.: Stab resistance of smart polymer coated textiles reinforced with particle additives. Compos. Struct. 235, (2020). https://doi.org/10.1016/j.compstruct.2019.111812

  27. Arora, S., Majumdar, A., Butola, B.S.: Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics. Compos. Struct. 210, 41–48 (2018). https://doi.org/10.1016/j.compstruct.2018.11.028

    Article  Google Scholar 

  28. Dixit, P., Ghosh, A., Majumdar, A.: Hybrid approach for augmenting the impact resistance of p-aramid fabrics: grafting of ZnO nanorods and impregnation of shear thickening fluid. J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-019-03830-z

    Article  Google Scholar 

  29. Arora, S., Majumdar, A., Butola, B.S.: Deciphering the structure-induced impact response of ZnO nanorod grafted UHMWPE woven fabrics. Thin-Walled Struct. 156, 106991 (2020). https://doi.org/10.1016/j.tws.2020.106991

    Article  Google Scholar 

  30. Chu, Y., Chen, X., Sheel, D.W., Hodgkinson, J.L.: Surface modification of aramid fibers by atmospheric pressure plasma-enhanced vapor deposition. Text. Res. J. 84, 1288–1297 (2014). https://doi.org/10.1177/0040517513515311

    Article  CAS  Google Scholar 

  31. Sun, D., Chen, X.: Plasma modification of Kevlar fabrics for ballistic applications. Text. Res. J. 82, 1928–1934 (2012). https://doi.org/10.1177/0040517512450765

    Article  CAS  Google Scholar 

  32. Chu, Y., Chen, X., Tian, L.: Modifying friction between ultra-high molecular weight polyethylene (UHMWPE) yarns with plasma enhanced chemical vapour deposition (PCVD). Appl. Surf. Sci. 406, 77–83 (2017). https://doi.org/10.1016/j.apsusc.2017.02.109

    Article  CAS  Google Scholar 

  33. Wang, X., Zhang, J., Bao, L., Yang, W., Zhou, F., Liu, W.: Enhancement of the ballistic performance of aramid fabric with polyurethane and shear thickening fluid. Mater. Des. 196, 109015 (2020). https://doi.org/10.1016/j.matdes.2020.109015

    Article  CAS  Google Scholar 

  34. Kim, Y.H., Kumar, S.K.S., Park, Y., Kwon, H., Kim, C.G.: High-velocity impact onto a high-frictional fabric treated with adhesive spray coating and shear thickening fluid impregnation. Compos. Part B Eng. 185, 107742 (2020). https://doi.org/10.1016/j.compositesb.2020.107742

    Article  CAS  Google Scholar 

  35. Kędzierski, P., Gieleta, R., Morka, A., Niezgoda, T., Surma, Z.: Experimental study of hybrid soft ballistic structures. Compos. Struct. 153, 204–211 (2016). https://doi.org/10.1016/j.compstruct.2016.06.006

    Article  Google Scholar 

  36. Majumdar, A., Laha, A., Bhattacharjee, D., Biswas, I.: Tuning the structure of 3D woven aramid fabrics reinforced with shear thickening fluid for developing soft body armour. Compos. Struct. 178, 415–425 (2017). https://doi.org/10.1016/j.compstruct.2017.07.018

    Article  Google Scholar 

  37. Zhao, C., Wang, Y., Cao, S., Xuan, S., Jiang, W., Gong, X.: Conductive shear thickening gel/Kevlar wearable fabrics: A flexible body armor with mechano-electric coupling ballistic performance. Compos. Sci. Technol. 182, 107782 (2019). https://doi.org/10.1016/j.compscitech.2019.107782

    Article  CAS  Google Scholar 

  38. Bajya, M., Majumdar, A., Butola, B.S., Arora, S., Bhattacharjee, D.: Ballistic performance and failure modes of woven and unidirectional fabric based soft armour panels. Compos. Struct. 255, 112941 (2021). https://doi.org/10.1016/j.compstruct.2020.112941

    Article  Google Scholar 

  39. Mawkhlieng, U., Majumdar, A.: Designing of hybrid soft body armour using high-performance unidirectional and woven fabrics impregnated with shear thickening fluid. Compos. Struct. 253, 112776 (2020). https://doi.org/10.1016/j.compstruct.2020.112776

    Article  Google Scholar 

  40. Arora, S., Majumdar, A., Butola, B.S.: Soft armour design by angular stacking of shear thickening fluid impregnated high-performance fabrics for quasi-isotropic ballistic response. Compos. Struct. 233, 111720 (2020). https://doi.org/10.1016/j.compstruct.2019.111720

    Article  Google Scholar 

  41. Tan, V.B.C., Tay, T.E., Teo, W.K.: Strengthening fabric armour with silica colloidal suspensions. Int. J. Solids Struct. 42, 1561–1576 (2005). https://doi.org/10.1016/j.ijsolstr.2004.08.013

    Article  Google Scholar 

  42. Gürgen, S., Kuşhan, M.C.: The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Test. 64, 296–306 (2017). https://doi.org/10.1016/j.polymertesting.2017.11.003

    Article  CAS  Google Scholar 

  43. Karahan, M.: Comparison of ballistic performance and energy absorption capabilities of woven and uni-directional aramid fabrics. Text. Res. J. 78, 718–730 (2008). https://doi.org/10.1177/0040517508090487

    Article  CAS  Google Scholar 

  44. Karahan, M., Kuş, A., Eren, R.: An investigation into ballistic performance and energy absorption capabilities of woven aramid fabrics. Int. J. Impact Eng. 35, 499–510 (2008). https://doi.org/10.1016/j.ijimpeng.2007.04.003

    Article  Google Scholar 

  45. Abtew, M.A., Boussu, F., Bruniaux, P., Loghin, C., Cristian, I.: Engineering of 3D warp interlock p-aramid fabric structure and its energy absorption capabilities against ballistic impact for body armour applications. Compos. Struct. 225, 111179 (2019). https://doi.org/10.1016/j.compstruct.2019.111179

    Article  Google Scholar 

  46. Guo, Z., Chen, W., Zheng, J.: Effect of replacement strike-face material on the ballistic performance of multi-ply soft armor targets. Text. Res. J. 89, 711–725 (2018). https://doi.org/10.1177/0040517517753641

    Article  CAS  Google Scholar 

  47. Guo, Z., Chen, W.: A merit parameter to determine the stacking order of heterogeneous diphasic soft armor systems. Compos. Struct. 241, 112086 (2020). https://doi.org/10.1016/j.compstruct.2020.112086

    Article  Google Scholar 

  48. Cunniff, P.M.: Dimensionless parameters for optimization of textile-based body armor systems. In: Proceeding of the 18th International Symposium on Ballistics. Lancaster, PA: Technomic Pub. Co. pp. 1303–1310 (1999).

  49. Yang, Y., Chen, X.: Influence of fabric architecture on energy absorption efficiency of soft armour panel under ballistic impact. Compos. Struct. 224, 111015 (2019). https://doi.org/10.1016/J.COMPSTRUCT.2019.111015

    Article  Google Scholar 

  50. Yang, Y., Chen, X.: Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design. Compos. Struct. 164, 1–9 (2017). https://doi.org/10.1016/j.compstruct.2016.12.057

    Article  CAS  Google Scholar 

  51. Textiles-Bullet resistant jackets-Performance requirements, IS standard-17051. (2018).

  52. Booth, J.E.: Fabric dimensions and properties. In: Principles of textile testing. pp. 255–345. CBS publisherand distributors pvt. ltd. (2017).

  53. Bandaru, A.K., Chavan, V.V., Ahmad, S., Alagirusamy, R., Bhatnagar, N.: Ballistic impact response of Kevlar® reinforced thermoplastic composite armors. Int. J. Impact Eng. 89, 1–13 (2016). https://doi.org/10.1016/j.ijimpeng.2015.10.014

    Article  Google Scholar 

  54. U.S. Department of Justice: Ballistic resistance of body armor, NIJ standard-0101.06. (2008).

Download references

Acknowledgement

The authors are thankful to Defence Research and Development Organisation (DRDO), India and Terminal Ballistics Research Laboratory (TBRL), Chandigarh for providing financial and technical assistances for this research work through Grant No. DFTM/03/3203/ M/01/JATC. The support of Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, Reliance Industries and FICCI are also greatly acknowledged.

Funding

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Majumdar.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajya, M., Majumdar, A., Butola, B.S. et al. Mitigating the Blunt Trauma of Soft Armour Panels using Polycarbonate Sheets: A Cost-effective Solution. Appl Compos Mater 28, 1089–1109 (2021). https://doi.org/10.1007/s10443-021-09905-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09905-y

Keywords

Navigation