Skip to main content
Log in

Tunable bandpass filter using double resistive feedback floating active inductor for 5 GHz wireless LAN Applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

It has been a challenging task for the designers to implement on-chip bandpass filter at high frequency with better performance. In this paper, a tunable RF bandpass filter using double resistive feedback floating active inductor (AI) based on gyrator-C topology has been proposed using 40 nm CMOS technology for 5 GHz WLAN applications. Small signal analytical modelling determines the design parameters affecting the performance of proposed floating AI, which ascertains that the double resistive feedback increases the quality factor as well as inductance value. The proposed AI attains a maximum quality factor of 964, high inductance ranging from 420 to 2080 nH and wide inductive bandwidth varying from 550 MHz to 7.85 GHz. Total current drawn by the AI is 2.66 mA at 1.2 V power supply and occupies an area of 17.1 × 9.1 µm2. In order to validate the performance of AI, a second-order tunable bandpass filter with frequency range 5.15–5.35 GHz has been implemented, with a small fractional 3-dB bandwidth, quality factor and 1-dB compression point of 15 MHz, 346 and − 2.8 dBm respectively. The Bandpass filter attains the figure of merit of 92.16 dB and dynamic range of 150 dB-Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

There is no associated data available for this work.

References

  1. Wang, X., Mao, S., & Gong, M. X. (2017). A survey of LTE Wi-Fi coexistence in unlicensed bands. GetMobile: Mobile Computing and Communications, 20(3), 17–23

    Article  Google Scholar 

  2. Liu, R., & He, W. (2013). A novel Sierpinski fractal antenna for wireless application. In 2013 International conference on computational and information sciences (pp. 1347–1348). IEEE.

  3. Tariq, M., Anjum, M. R., & Amjad, M. (2018). Design of simulation system for lte-u using 5 ghz band in matlab. Wireless Personal Communications, 100(4), 1661–1676

    Article  Google Scholar 

  4. Matsuge, K., Hiura, S., Ishida, M., Kitahara, T., & Yamamoto, T. (2004). Full RF module with embedded filters for 2.4 GHz and 5 GHz dual band WLAN applications. In 2004 IEEE MTT-S International microwave symposium digest (IEEE Cat. No. 04CH37535) (Vol. 2, pp. 629–632). IEEE.

  5. Kumar, V., Mehra, R., & Islam, A. (2017). A 2.5 GHz low power, high-Q reliable design of active bandpass filter. IEEE Transactions on Device and Materials Reliability, 17(1), 229–244

    Article  Google Scholar 

  6. Tsividis, Y., Banu, M., & Khoury, J. (1986). Continuous-time MOSFET-C filters in VLSI. IEEE Journal of Solid-State Circuits, 21(1), 15–30

    Article  Google Scholar 

  7. Laxminidhi, T., Prasadu, V., & Pavan, S. (2008). Widely programmable high-frequency active RC filters in CMOS technology. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(2), 327–336

    Article  MathSciNet  Google Scholar 

  8. Kuhn, W. B., Yanduru, N. K., & Wyszynski, A. S. (1998). Q-enhanced LC bandpass filters for integrated wireless applications. IEEE Transactions on Microwave Theory and Techniques, 46(12), 2577–2586

    Article  Google Scholar 

  9. Choi, T. C., Kaneshiro, R. T., Brodersen, R. W., Gray, P. R., Jett, W. B., & Wilcox, M. (1983). High-frequency CMOS switched-capacitor filters for communications application. IEEE Journal of Solid-State Circuits, 18(6), 652–664

    Article  Google Scholar 

  10. Nauta, B. (1992). A CMOS transconductance-C filter technique for very high frequencies. IEEE Journal of Solid-State Circuits, 27(2), 142–153

    Article  Google Scholar 

  11. Yuan, F. (2008). CMOS active inductors. CMOS Active Inductors and Transformers: Principle, implementation, and applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76479-5_2

  12. Thanachayanont, A., & Ngow, S. S. (2002, August). Class AB VHF CMOS active inductor. In The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002. (Vol. 1, pp. I-64). IEEE.

  13. Wu, Y., Ding, X., Ismail, M., & Olsson, H. (2003). RF bandpass filter design based on CMOS active inductors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 50(12), 942–949

    Article  Google Scholar 

  14. Sachan, D., Goswami, M., & Misra, P. K. (2018). A high-Q floating active inductor using 130 nm BiCMOS technology and its application in IF band pass filter. Analog Integrated Circuits and Signal Processing, 96(3), 385–393

    Article  Google Scholar 

  15. Pantoli, L., Stornelli, V., & Leuzzi, G. (2016). A low-voltage low-power 0.25 µm integrated single transistor active inductor-based filter. Analog Integrated Circuits and Signal Processing, 87(3), 463–469

    Article  Google Scholar 

  16. Slimane, A., TEDJINI, S. A., & Haddad, F. (2018, August). Novel CMOS active inductor for tunable RF circuits. In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 917–920). IEEE.

  17. Suresh, L. N., & Manickam, B. (2019). Multiple cascode flipped active inductor-based tunable bandpass filter for fully integrated RF front-end. IET Circuits, Devices & Systems, 14(1), 93–99

    Article  Google Scholar 

  18. Selvathi, D., & Pown, M. (2014, December). Design of band pass filter using active inductor for RF receiver front-end. In 2014 International Conference on Communication and Network Technologies (pp. 296–301). IEEE.

  19. Hammadi, A. B., Mhiri, M., Haddad, F., Saad, S., & Besbes, K. (2017). An enhanced design of multi-band RF band pass filter based on tunable high-Q active inductor for nano-satellite applications. Journal of Circuits, Systems and Computers, 26(04), 1750055

    Article  Google Scholar 

  20. Hammadi, A. B., Mhiri, M., Haddad, F., Saad, S., & Besbes, K. (2016). An enhanced design of RF integrated differential active inductor. BioNanoScience, 6(3), 185–192

    Article  Google Scholar 

  21. Momen, H. G., Yazgi, M., Kopru, R., & Saatlo, A. N. (2016). Design of a new low loss fully CMOS tunable floating active inductor. Analog Integrated Circuits and Signal Processing, 89(3), 727–737

    Article  Google Scholar 

  22. Konal, M., & Kacar, F. (2017). MOS only grounded active inductor circuits and their filter applications. Journal of Circuits, Systems and Computers, 26(06), 1750098

    Article  Google Scholar 

  23. Saad, S., Mhiri, M., Hammadi, A. B., & Besbes, K. (2016). A new low-power, high-Q, wide tunable CMOS active inductor for RF applications. IETE Journal of Research, 62(2), 265–273

    Article  Google Scholar 

  24. Darvishi, M., Van, R., Klumperink, E. A. M., & Nauta, B. (2012). Widely tunable 4th order switched Gm -C band-pass filter based on N-path filters. IEEE Journal of Solid-State Circuits, 47(12), 3105–3119

    Article  Google Scholar 

  25. Xiao, H., & Schaumann, R. (2007). A 5.4-GHz high-Q tunable active-inductor bandpass filter in standard digital CMOS technology. Analog Integrated Circuits and Signal Processing, 51(1), 1–9

    Article  Google Scholar 

  26. Huang, K. K., Wang, S., & Tzuang, C. K. C. (2008, May). Active bandpass filter using transformer feedback in 0.18-μm CMOS for 802.11 a wireless LAN. In 2008 IEEE International Symposium on Circuits and Systems (pp. 3134–3137). IEEE.

  27. Wang, Y., Ye, L., Liao, H., & Huang, R. (2012, May). Cost-efficient CMOS RF tunable bandpass filter with active inductor-less biquads. In 2012 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2139–2142). IEEE.

  28. Mehra, R., Kumar, V., Islam, A., & Kaushik, B. K. (2017). Variation-aware widely tunable nanoscale design of CMOS active inductor-based RF bandpass filter. International Journal of Circuit Theory and Applications, 45(12), 2181–2200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritesh Kumar Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Misra, P.K. Tunable bandpass filter using double resistive feedback floating active inductor for 5 GHz wireless LAN Applications. Analog Integr Circ Sig Process 108, 205–213 (2021). https://doi.org/10.1007/s10470-021-01849-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01849-4

Keywords

Navigation