Skip to main content
Log in

A discrete-time double-quadrature low-IF receiver for multi-standard and multi-carrier applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, we present a new RF receiver architecture capable of addressing different RF bands and communication protocols. The frequency planning and discrete-time complex signal processing choices greatly simplify the frequency synthesis circuit. Since this is one of the most power-hungry blocks in the receiver, one can expect a reduction in power consumption. Thanks to the Bandpass Sampling (BPS) technique, the receiver addresses multiple RF bands without changing the sampling frequency. The BPS downconverts the signal to a varying Intermediate Frequencies (IF), called sliding IF. From this point on, the signal processing is in the discrete-time domain. The same clock is employed to drive a time-varying gain amplifier (TVGA), which implements a mixing process by multiplying the input with a sine or cosine centered at IF. A Double-Quadrature Low-IF frequency planning and complex signal processing avoid the problem of image signal folding in both downconversions. Behavioral modeling shows how this architecture can be utilized for LTE and IEEE802.11g standards, fulfilling the noise, linearity, and image rejection specifications. With 6 bits resolution in the TVGA gains, the quantized sine and cosine lead to a Signal-to-Distortion Ratio of 48dB. The receiver achieves an image rejection of 55dB for the LTE standard and 42dB for IEEE802.11g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Staszewski, R. B., Muhammad, K., Leipold, D., Hung, C.-M., Ho, Y.-C., Wallberg, J. L., et al. (2004). All-digital tx frequency synthesizer and discrete-time receiver for bluetooth radio in 130-nm CMOS. IEEE Journal of Solid-State Circuits, 39(12), 2278–2291.

    Article  Google Scholar 

  2. Mitola, J. (1995). The software radio architecture. IEEE Communications Magazine, 33(5), 26–36.

    Article  Google Scholar 

  3. Kale, A., Popuri, S., Koeberle, M., Sturm, J., & Pasupureddi, V. S. R. (2019). A -40 dB EVM, 77 MHz dual-band tunable gain sub-sampling receiver front end in 65-nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(3), 1166–1179.

    Article  Google Scholar 

  4. Bazrafshan, A., Taherzadeh-Sani, M., & Nabki, F. (2018). A 0.8-4-GHz software-defined radio receiver with improved harmonic rejection through non-overlapped clocking. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(10), 3186–3195.

    Article  Google Scholar 

  5. Muhammad, K., Ho, Y. C., Mayhugh, T., Hung, C. M., Jung, T., Elahi, I., et al. (2005). A discrete time quad-band GSM/GPRS receiver in a 90nm digital CMOS process, In Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005 (pp. 809–812).

  6. Bagheri, R., Mirzaei, A., Chehrazi, S., Heidari, M. E., Lee, M., Mikhemar, M., et al. (2006). An 800-mhz-6-ghz software-defined wireless receiver in 90-nm cmos. IEEE Journal of Solid-State Circuits, 41(12), 2860–2876.

    Article  Google Scholar 

  7. Geis, A., Ryckaert, J., Bos, L., Vandersteen, G., Rolain, Y., & Craninckx, J. (2010). A 0.5 mm\(^2\) power-scalable 05–38-GHz CMOS DT-SDR receiver with second-order RF band-pass sampler. IEEE Journal of Solid-State Circuits, 45(11), 2375–2387.

    Google Scholar 

  8. Chen, R., & Hashemi, H. (2014). A 0.5-to-3 GHz software-defined radio receiver using discrete-time RF signal processing. IEEE Journal of Solid-State Circuits, 49(5), 1097–1111.

    Article  Google Scholar 

  9. Madadi, I., Tohidian, M., Cornelissens, K., Vandenameele, P., & Staszewski, R. B. (2016). A High IIP2 SAW-less superheterodyne receiver with multistage harmonic rejection. IEEE Journal of Solid-State Circuits, 51(2), 332–347.

    Article  Google Scholar 

  10. Tohidian, M., Madadi, I., & Staszewski, R. B. (2017). A fully integrated discrete-time superheterodyne receiver. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(2), 635–647.

    Article  Google Scholar 

  11. Jakonis, D., Folkesson, K., Dbrowski, J., Eriksson, P., & Svensson, C. (2005). A 2.4-ghz RF sampling receiver front-end in 0.18-um cmos. IEEE Journal of Solid State Circuits, 40(6), 1265–1277.

    Article  Google Scholar 

  12. Heragu, A., Ruffieux, D., & Enz, C. C. (2013). A 2.4-GHz MEMS-based PLL-free multi-channel receiver with channel filtering at RF. IEEE Journal of Solid-State Circuits, 48(7), 1689–1700.

    Article  Google Scholar 

  13. Cheng, J., Qi, N., Chiang, P. Y., Natarajan, A., & Low-Power, A. (2014). Low-voltage WBAN-compatible sub-sampling PSK receiver in 65 nm CMOS. IEEE Journal of Solid-State Circuits, 49(12), 3018–3030.

    Article  Google Scholar 

  14. Behjou, N., Larsen, T., Hoegdal, M. (2008). Design of a simultaneous multi-band RF sub-sampling receiver, 2008 IEEE MTT-S International Microwave Symposium Digest, pp. 5-8.

  15. Klumperink, E. A. M., Soer, M. C. M., Struiksma, R. E., van Vliet, F. E., & Nauta, B. (2016). Towards Low Power N-Path Filters for Flexible RF-Channel Selection. US: Springer International Publishing.

    Book  Google Scholar 

  16. Klumperink, E. A. M., Westerveld, H. J.,Nauta, B. (2017). N-path filters and Mixer-First Receivers: A Review, 2017 IEEE Custom Integrated Circuits Conference (CICC), pp. 1-8.

  17. Xu, Y., Zhu, J., & Kinget, P. R. (2018). A blocker-tolerant RF front end with harmonic-rejecting N-path filter. IEEE Journal of Solid-State Circuits, 53(2), 327–339.

    Article  Google Scholar 

  18. Akbar, H., & Abumoslem, J. (2021). A higher-order highly linear N-path band-pass filter. Circuits, Systems, and Signal Processing, 40(1), 50–69.

    Article  Google Scholar 

  19. Mohammad, E., Mahdi, T., & Ali, J. (2018). A wideband receiver front-end using 1st and 3rd harmonics of the N-path filter response. Analog Integrated Circuits and Signal Processing, 94(3), 451–467.

    Article  Google Scholar 

  20. Li, Y., Bakkaloglu, B., & Chakrabarti, C. (2007). A system level energy model and energy-quality evaluation for integrated tranceivers front-ends. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15(1), 90–103.

    Article  Google Scholar 

  21. Valkama, M., Renfors, M., & Koivunen, V. (2001). Advanced methods for I/Q imbalance compensation in communication receivers. IEEE Transactions on Signal Processing, 49(10), 2335–2344.

    Article  Google Scholar 

  22. Kroupa, V. F. (1998). Direct Digital Frequency Synthesizers. John Wiley & Sons.

    Book  Google Scholar 

  23. Gilbert, B. (1968). A precision four-quadrant multiplier with subnanosecond response. IEEE Journal of Solid-State Circuits, 3(4), 365–373.

    Article  Google Scholar 

  24. Proakis, J. G., & Salehi, M. (2008). Digital Communications. New York: McGraw-Hill.

    Google Scholar 

  25. Vaughan, R. G., Scott, N. L., & White, D. R. (1991). The theory of bandpass sampling. IEEE Transactions on Signal Processing, 39(9), 1973–1984.

    Article  Google Scholar 

  26. Sun,Y.-R. (2006). Generalized bandpass sampling receivers for software defined radio, Doctoral Dissertation, Royal Institute of Technology.

  27. ETSI 3rd Generation Partnership Project, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 12.5.0 Release 12) (2014).

  28. Eriksson, P., Tenhunen,H. The noise figure of a sampling mixer: theory and mesurement, ICECS’99 Proceedings of ICECS ’99 6th IEEE International Conference on Electronics, Circuits ans Systems (Cat. No.99EX357), vol. 2, pp.899-902

  29. Rhee, W., Xu, N., Zhou, B., & Wang, Z. (2013). Fractional-N frequency synthesis: overview and practical aspects with FIR-embedded design. Journal of Semiconductor Technology and Science, 13(2), 170–183.

    Article  Google Scholar 

  30. IEEE Standard for Information technology-Telecommunications and information exchange between systems Local and metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and physical layer (PHY) Specifications, IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pp. 1-2793 (2012).

  31. Gu, Q. (2006). RF System Design of Transceivers for Wireless Communications. US: Springer.

    Google Scholar 

  32. Lolis, L., Pelissier, M., Bernier, C., Dallet, D., Begueret, J. (2009). System design of bandpass sampling RF receivers, 2009 16th IEEE International Conference on Electronics, Circuits ans Systems - (ICECS 2009), pp. 691-694

  33. de Souza, M., Mariano, A., & Taris, T. (2017). Reconfigurable inductorless wideband CMOS LNA for wireless communications. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(3), 675–685.

    Article  Google Scholar 

  34. Mohamed, M. A., & Abd-ElAtty, H. M. (2014). Performance analysis of LTE-advanced physical layer. International Journal of Computer Science Issues. https://doi.org/10.1109/ICCCIS48478.2019.8974494.

    Article  Google Scholar 

  35. Otefa, A. M., ElBoghdadly, N. M., Sourour,E. A. (2007). Performance analysis of 802.11n wireless LAN physical layer, 2007 ITI 5th International Conference on Information and Communications Technology, pp. 279-288

  36. Iniewski, K. (2007). Wireless Technologies: Circuits. Systems and Devices: CRC Press.

  37. Shafik, R. A., Rahman, M. S., Islam,A. R. (2006) On the Extended Relationships Among EVM, BER and SNR as Performance Metrics, 2006 International Conference on Electrical and Computer Engineering, pp. 408-411

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis H. A. Lolis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lolis, L.H.A., Sionek, G., Mariano, A.A. et al. A discrete-time double-quadrature low-IF receiver for multi-standard and multi-carrier applications. Analog Integr Circ Sig Process 108, 335–349 (2021). https://doi.org/10.1007/s10470-021-01832-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01832-z

Keywords

Navigation