Skip to main content
Log in

Long-term changes in sea surface temperature (SST) within the southern Levantine Basin

  • Articles
  • Physical Oceanography, Marine Meteorology and Marine Physics
  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Knowledge of sea surface temperature (SST) behaviour is vital for long-term climate scenarios. This study highlights essential outcomes about the distinguishable and unsurprising warming of the SST along the southern border of the Levantine Basin. The analysis is based on monthly SST data for the period 1948–2018. The southern Levantine Basin has undergone SST increase, during the last 71 years. In this study, a consistent warming trend has been found for the analysed SST data series, with a rate of 0.04°C/a, i.e., 0.4°C/(10 a). From 1975 to 1991 the mean annual SST was 17.1°C, and this increased to be 19.2°C, over the period 2002–2018. Results revealed two opposite trends of variability: a decreasing trend (−0.06°C/a) over the period 1975–1991, and an increasing trend (0.2°C/a) from 2002 to 2018. Over the period 1948–2018, positive mean annual SST anomalies had an average of 1.8°C, and negative anomalies had an average of −1.1°C. The lowest SST total increase was found from January to April, with values about 0.03°C, while the highest warming appeared from June to September. The driving mechanisms behind the SST changes need to be more investigated, to understand the future trends and impacts of climate change in the Levantine Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adloff F, Somot S, Sevault F, et al. 2015. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Climate Dynamics, 45(9–10): 2775–2802, doi: https://doi.org/10.1007/s00382-015-2507-3

    Article  Google Scholar 

  • Alhammoud B, Béranger K, Mortier L, et al. 2005. Surface circulation of the Levantine Basin: comparison of model results with observations. Progress in Oceanography, 66(2–4): 299–320, doi: https://doi.org/10.1016/j.pocean.2004.07.015

    Article  Google Scholar 

  • Arrigo K R, van Dijken G L, Bushinsky S. 2008. Primary production in the Southern Ocean, 1997–2006. Journal of Geophysical Research: Oceans, 113(C8): C08004

    Article  Google Scholar 

  • Belkin I M. 2009. Rapid warming of large marine ecosystems. Progress in Oceanography, 81(1–4): 207–213, doi: https://doi.org/10.1016/j.pocean.2009.04.011

    Article  Google Scholar 

  • Bricaud A, Bosc E, Antoine D. 2002. Algal biomass and sea surface temperature in the Mediterranean Basin: Intercomparison of data from various satellite sensors, and implications for primary production estimates. Remote Sensing of Environment, 81(2–3): 163–178, doi: https://doi.org/10.1016/S0034-4257(01)00335-2

    Article  Google Scholar 

  • Collins M R, Knutti R, Arblaster J L, et al. 2013. Long-term climate change: Projections, commitments and irreversibility. In: Stocker T F, Qin D, Plattner K G, et al., eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Demarcq H. 2009. Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Progress in Oceanography, 83(1–4): 376–385, doi: https://doi.org/10.1016/j.pocean.2009.07.022

    Article  Google Scholar 

  • Emeis K C, Struck U, Schulz H M, et al. 2000. Temperature and salinity variations of Mediterranean Sea surface waters over the last 16 000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios. Palaeogeography, Palaeoclimatology, Palaeoecology, 158(3–4): 259–280, doi: https://doi.org/10.1016/S0031-0182(00)00053-5

    Article  Google Scholar 

  • Feely R A, Byrne R H, Acker J G, et al. 1998. Winter-summer variations of calcite and aragonite saturation in the Northeast Pacific. Marine Chemistry, 25(3): 227–241

    Article  Google Scholar 

  • Feudale L, Shukla J. 2007. Role of Mediterranean SST in enhancing the European heat wave of summer 2003. Geophysical Research Letters, 34(3): L03811

    Article  Google Scholar 

  • Gregg W W, Conkright M E, Ginoux P, et al. 2003. Ocean primary production and climate: global decadal changes. Geophysical Research Letters, 30(15): 1809

    Article  Google Scholar 

  • Güçlü Y. 2013. Sea surface temperature anomalies along the Black Sea region coast of Turkey (1971–2010 period). Journal of Human Sciences (in Turkish), 10(1): 863–896, doi: https://doi.org/10.14687/ijhs.v10i1.2565

    Article  Google Scholar 

  • Hayes A, Kucera M, Kallel N, et al. 2005. Glacial Mediterranean sea surface temperatures based on planktonic foraminiferal assemblages. Quaternary Science Reviews, 24(7–9): 999–1016, doi: https://doi.org/10.1016/j.quascirev.2004.02.018

    Article  Google Scholar 

  • Horvat M, Kotnik J, Logar M, et al. 2003. Speciation of mercury in surface and deep-sea waters in the Mediterranean Sea. Atmospheric Environment, 37(S1): 93–108

    Article  Google Scholar 

  • IPCC. 2013. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1535

    Google Scholar 

  • Kirtman B, Power S B, Adedoyin J A, et al. 2013. Near-term climate change: projections and Predictability. In: Stocker T F, Qin D, Plattner G K, et al, eds. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Kourafalou V H, Barbopoulos K. 2003. High resolution simulations on the North Aegean Sea seasonal circulation. Annales Geophysicae, 21(1): 251–265, doi: https://doi.org/10.5194/angeo-21-251-2003

    Article  Google Scholar 

  • Maiyza I A, El-Geziry T M, Maiyza H I, et al. 2015. On the long-term variations of the surface hydrographic anomalies in the northern hemisphere. In: Proceedings of the 1st International Conference on Science, Engineering and Environment (SEE). Tsu City, Mie prefecture, Japan: National Institute of Oceanography & Fisheries (NIOF), 457–461

    Google Scholar 

  • Maiyza I A, Kamel M S. 2009. Climatological trend of sea surface salinity anomalies in the South Eastern Mediterranean Sea. Journal King Abdulaziz University: Marine Science, 21(2): 63–72

    Google Scholar 

  • Maiyza I A, Said M A, Kamel M S. 2010. Sea surface temperature anomalies in the South Eastern Mediterranean Sea. Journal King Abdulaziz University: Marine Science, 21(1): 151–159, doi: https://doi.org/10.4197/Mar.21-1.9

    Article  Google Scholar 

  • Marullo S, Nardelli B B, Guarracino M, et al. 2007. Observing the Mediterranean Sea from space: 21 years of Pathfinder-AVHRR Sea surface temperatures (1985 to 2005): Re-analysis and validation. Ocean Science, 3(2): 299–310, doi: https://doi.org/10.5194/os-3-299-2007

    Article  Google Scholar 

  • Millot C, Taupier-Letage I. 2005. Circulation in the Mediterranean Sea. In: Saliot A, ed. The Mediterranean Sea. Berlin: Springer, 29–66

    Chapter  Google Scholar 

  • Mohamed B, Abdallah A M, El-Din K A, et al. 2019. Inter-annual Variability and trends of sea level and sea surface temperature in the Mediterranean Sea over the last 25 years. Pure and Applied Geophysics, 176(8): 3787–3810, doi: https://doi.org/10.1007/s00024-019-02156-w

    Article  Google Scholar 

  • Nykjaer L. 2009. Mediterranean Sea surface warming 1985–2006. Climate Research, 39(1): 11–17

    Article  Google Scholar 

  • Özsoy E, Hecht A, Ünlüata Ü. 1989. Circulation and hydrography of the Levantine Basin. results of POEM coordinated experiments 1985–1986. Progress in Oceanography, 22(2): 125–170

    Article  Google Scholar 

  • Pastor F, Valiente J A, Palau J L. 2018. Sea surface temperature in the mediterranean: Trends and spatial patterns (1982–2016). Pure and Applied Geophysics, 175(11): 4017–4029, doi: https://doi.org/10.1007/s00024-017-1739-z

    Article  Google Scholar 

  • Pisano A, Marullo S, Artale V, et al. 2020. New evidence of Mediterranean climate change and variability from sea surface temperature observations. Remote Sensing, 12(1): 132, doi: https://doi.org/10.3390/rs12010132

    Article  Google Scholar 

  • Poulain P M, Barbanti R. 2007. Thermohaline properties of the Mediterranean Sea as measured by profiling floats between 2000 and 2006. Rapp Comm Int Mer Medit, 38: 186

    Google Scholar 

  • Rixen M, Beckers J M, Levitus S, et al. 2005. The Western Mediterranean deep water: a proxy for climate change. Geophysical Research Letters, 32(12): L12608

    Article  Google Scholar 

  • Russo A, Artegiani A. 1996. Adriatic Sea hydrography. Scientia Marina, 60(S2): 33–43

    Google Scholar 

  • Sakalli A. 2017. Sea surface temperature change in the Mediterranean Sea under climate change: a linear model for simulation of the sea surface temperature up to 2100. Applied Ecology and Environmental Research, 15(1): 707–716, doi: https://doi.org/10.15666/aeer/1501_707716

    Article  Google Scholar 

  • Samuel-Rhoads Y, Zodiatis G, Nikolaidis A, et al. 2013. Climate change impacts on sea surface temperature in the Eastern Mediterranean, Levantine Basin. In: Proceedings of SPIE 8795, First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013). Paphos, Cyprus: SPIE, 87950N

    Google Scholar 

  • Shaltout M, Omstedt A. 2014. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia, 56(3): 411–443, doi: https://doi.org/10.5697/oc.56-3.411

    Article  Google Scholar 

  • Skliris N, Sofianos S, Gkanasos A, et al. 2012. Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dynamics, 62(1): 13–30, doi: https://doi.org/10.1007/s10236-011-0493-5

    Article  Google Scholar 

  • Soloviev A, Lukas R. 2006. The Near-Surface Layer of the Ocean: Structure, Dynamics and Applications. Netherlands: Springer, 572

    Google Scholar 

  • Tchernia P. 1980. Descriptive Regional Oceanography. Nueva York: Pergamon Press, 253

    Google Scholar 

  • Volosciuk C, Maraun D, Semenov V A, et al. 2016. Rising Mediterranean Sea surface temperatures amplify extreme summer precipitation in Central Europe. Scientific Reports, 6: 32450, doi: https://doi.org/10.1038/srep32450

    Article  Google Scholar 

  • Zavatarielli M, Mellor G L. 1995. A numerical study of the Mediterranean Sea circulation. Journal of Physical Oceanography, 25(6): 1384–1414, doi: https://doi.org/10.1175/1520-0485(1995)025<1384:AN-SOTM>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. El-Geziry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Geziry, T.M. Long-term changes in sea surface temperature (SST) within the southern Levantine Basin. Acta Oceanol. Sin. 40, 27–33 (2021). https://doi.org/10.1007/s13131-021-1709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-021-1709-2

Key words

Navigation