Skip to main content
Log in

Behavior-Based Navigation of an Autonomous Hexapod Robot Using a Hybrid Automaton

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The hexapod robot is one of the important classes in legged robots due to its great potential to operate in complex settings with high stability and flexibility. However, few researches have investigated the navigation and autonomous locomotion of this type of robot. This paper concerns with the behavior-based control and navigation of an autonomous hexapod robot utilizing a hybrid automaton. Switching between the distinct behaviors is based on the sensory data, and no representation of the environment is included. Since these systems are likely to rise chattering phenomenon, a sliding mode including clockwise and counter-clockwise boundary following behaviors are considered between the goal attraction and obstacle avoidance modes to modify the automaton. The hybrid automaton undertakes the path planning of a reference point instead of the robot. Thus, in order to be able to implement the navigation algorithm, the hexapod robot is converted to a point mass robot within two transformations. A parameter study is also performed to investigate the effects of the controllers’ design parameters on the performance of the navigation algorithm and robot. The results show that enhancing the smoothness of the robot’s motion would deteriorate the precision in tracking the reference point and the reaction speed and vice versa. Moreover, simulation tests confirm the effectiveness of the navigation algorithm in generating the optimal path by perfectly switching between distinct modes as well as the capability of the robot to follow the reference point with an arbitrary gait. Furthermore, comparing the performance of the presented navigation strategy to that of similar algorithms, such as Bug and Potential field, yields a satisfying result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tariwala, S. Grid Navigation and Path Planning Algorithm Using a Proposed New Greedy Approach. Doctoral dissertation, Sciences (1914)

  2. Karmore, S.L.P.S.: Design and Development of Sonar Based Autonomous Robot for Localization and Mapping for Potentially Unsafe Areas (1918)

  3. Pruski, A., Rohmer, S.: Robust trajectory for Mobile robot. WIT Trans. Inf. Commun. Technol. 1 (1970)

  4. Stentz, A., Hebert, M.: A complete navigation system for goal acquisition in unknown environments. Auton. Robot. 2(2), 127–145 (1995)

    Article  Google Scholar 

  5. Weisbin, C.R., de Saussure, G., Einstein, J.R., Pin, F.G., Heer, E.: Autonomous mobile robot navigation and learning. Computer. 22(6), 29–35 (1989)

    Article  Google Scholar 

  6. Lawitzky, G.: A navigation system for cleaning robots. Auton. Robot. 9(3), 255–260 (2000)

    Article  Google Scholar 

  7. Mathisen, S.G., Leira, F.S., Helgesen, H.H., Gryte, K., Johansen, T.A.: Autonomous ballistic airdrop of objects from a small fixed-wing unmanned aerial vehicle. Auton. Robot., 1-17 (2020)

  8. Woosley, B., Dasgupta, P., Rogers, J.G., Twigg, J.: Multi-robot information driven path planning under communication constraints. Auton. Robot., 1–17 (2019)

  9. Wheeler, D.O., Koch, D.P., Jackson, J.S., Ellingson, G.J., Nyholm, P.W., McLain, T.W., Beard, R.W.: Relative navigation of autonomous GPS-degraded micro air vehicles. Auton. Robot., 1-20 (2020)

  10. Kortenkamp, D., Bonasso, R.P., Murphy, R.: Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems. MIT Press (1998)

  11. Arkin, R.C., Arkin, R.C.: Behavior-Based Robotics. MIT Press (1998)

  12. Egerstedt, M.: Behavior based robotics using hybrid automata. In: International Workshop on Hybrid Systems: Computation and Control, pp. 103-116. Springer, Berlin (2000)

  13. Axelsson, H., Wardi, Y., Egerstedt, M., Verriest, E.I.: Gradient descent approach to optimal mode scheduling in hybrid dynamical systems. J. Optim. Theory Appl. 136(2), 167–186 (2008)

    Article  MathSciNet  Google Scholar 

  14. Reina, G., Foglia, M.: On the Mobility of all-Terrain Rovers. Ind. Robot. Int. J. (2013)

  15. Nagatani, K., Noyori, T., Yoshida, K.: Development of multi-DOF tracked vehicle to traverse weak slope and climb up rough slope. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2849-2854. IEEE (2013)

  16. Sadedel, M., Yousefi-Koma, A., Khadiv, M., Mansouri, S.: Investigation on dynamic modeling of SURENA III humanoid robot with heel-off and heel-strike motions. Iran. J. Sci. Technol. Trans. Mech. Eng. 41(1), 9–23 (2017)

    Article  Google Scholar 

  17. Chen, S.C., Huang, K.J., Chen, W.H., Shen, S.Y., Li, C.H., Lin, P.C.: Quattroped: a leg--wheel transformable robot. IEEE/ASME Trans. Mechatron. 19(2), 730–742 (2013)

    Article  Google Scholar 

  18. Sadedel, M., Yousefi Koma, A., Iranmanesh, F.: Heel-off and toe-off motions optimization for a2D humanoid robot equipped with active toe joints (2). Modares Mech. Eng. 16(3), 87–97 (2016)

    Google Scholar 

  19. Agheli, M., Nestinger, S.S.: Force-based stability margin for multi-legged robots. Robot. Auton. Syst. 83, 138–149 (2016)

    Article  Google Scholar 

  20. Sadedel, M., Yousefi-Koma, A., Khadiv, M., Mahdavian, M.: Adding low-cost passive toe joints to the feet structure of SURENA III humanoid robot. Robotica. 35(11), 2099–2121 (2017)

    Article  Google Scholar 

  21. Sadedel, M., Yousefikoma, A., Iranmanesh, F.: Analytical dynamic modelling of heel-off and toe-off motions for a 2d humanoid robot. J. Comput. Appl. Mech. 46(2), 243–256 (2015)

    Google Scholar 

  22. Zhong, G., Chen, L., Jiao, Z., Li, J., Deng, H.: Locomotion control and gait planning of a novel hexapod robot using biomimetic neurons. IEEE Trans. Control Syst. Technol. 26(2), 624–636 (2017)

    Article  Google Scholar 

  23. Manglik, A., Gupta, K., Bhanot, S.: Adaptive gait generation for hexapod robot using genetic algorithm. In: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 1-6. IEEE (2016)

  24. Khudher, D., Powell, R.: Quadratic programming for inverse kinematics control of a hexapod robot with inequality constraints. In: 2016 International Conference on Robotics: Current Trends and Future Challenges (RCTFC), pp. 1-5. IEEE (2016)

  25. Gao, H., Liu, Y., Ding, L., Liu, G., Deng, Z., Liu, Y., Yu, H.: Low impact force and energy consumption motion planning for hexapod robot with passive compliant ankles. J. Intell. Robot. Syst. 94(2), 349–370 (2019)

    Article  Google Scholar 

  26. Zhu, Y., Guo, T., Liu, Q., Li, Q., Yan, R.: A study of arbitrary gait pattern generation for turning of a bio-inspired hexapod robot. Robot. Auton. Syst. 97, 125–135 (2017)

    Article  Google Scholar 

  27. He, B., Xu, S., Zhou, Y., Wang, Z.: Mobility properties analyses of a wall climbing hexapod robot. J. Mech. Sci. Technol. 32(3), 1333–1344 (2018)

    Article  Google Scholar 

  28. Stasse, O., Verrelst, B., Vanderborght, B., Yokoi, K.: Strategies for humanoid robots to dynamically walk over large obstacles. IEEE Trans. Robot. 25(4), 960–967 (2009)

    Article  Google Scholar 

  29. Michel, P., Chestnutt, J., Kuffner, J., Kanade, T.: Vision-guided humanoid footstep planning for dynamic environments. In: 5th IEEE-RAS International Conference on Humanoid Robots, pp. 13-18. IEEE (2005)

  30. Havoutis, I., Ortiz, J., Bazeille, S., Barasuol, V., Semini, C., Caldwell, D.G.: Onboard perception-based trotting and crawling with the hydraulic quadruped robot (HyQ). In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6052-6057. IEEE (2013)

  31. Stelzer, A., Hirschmüller, H., Görner, M.: Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain. Int. J. Robot. Res. 31(4), 381–402 (2012)

    Article  Google Scholar 

  32. Belter, D., Skrzypczyński, P.: Rough terrain mapping and classification for foothold selection in a walking robot. J. Field Robot. 28(4), 497–528 (2011)

    Article  Google Scholar 

  33. Agheli, M., Nestinger, S.S.: Inverse kinematics for arbitrary orientation of hexapod walking robots with 3-dof leg motion. In: 15th International Association of Science and Technology for Development (IASTED) Conference on Robotics and Applications (RA 2010), Cambridge, MA, Nov, pp. 1-3. (2010)

  34. Bahrami, A., Tafaoli-Masoule, M., Bahrami, M.N.: Active vibration control of piezoelectric Stewart platform based on fuzzy control. Int. J. Mater. Mech. Eng. (IJMME). 2(1), 17–22 (2013)

    Google Scholar 

  35. Åström, K.J.: Theory and applications of adaptive control—a survey. Automatica. 19(5), 471–486 (1983)

    Article  Google Scholar 

  36. Van, M., Mavrovouniotis, M., Ge, S.S.: An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1448–1458 (2018)

    Article  Google Scholar 

  37. Filippov, A.F.: Equations with the Right-Hand Side Continuous in x and Discontinuous in T. In: Differential equations with discontinuous righthand sides, pp. 3–47. Springer, Dordrecht (1988).

  38. Egerstedt, M., Johansson, K., Lygeros, J., Sastry, S.: Behavior based robotics using regularized hybrid automata. In: Proceedings of the 38th IEEE conference on decision and control (Cat. No. 99CH36304), vol. 4, pp. 3400-3405. IEEE (1999)

  39. Egerstedt, M.: Control of Mobile Robots. Retrieved from https://www.coursera.org/learn/mobile-robot (n.d.)

  40. McGuire, K.N., de Croon, G.C.H.E., Tuyls, K.: A comparative study of bug algorithms for robot navigation. Robot. Auton. Syst. 121, 103261 (2019)

    Article  Google Scholar 

  41. Lumelsky, V., Stepanov, A.: Dynamic path planning for a mobile automaton with limited information on the environment. IEEE Trans. Autom. Control. 31(11), 1058–1063 (1986)

    Article  Google Scholar 

  42. Chen, Y., Liang, J., Wang, Y., Pan, Q., Tan, J., Mao, J.: Autonomous mobile robot path planning in unknown dynamic environments using neural dynamics. Soft. Comput. 24(18), 13979–13995 (2020)

    Article  Google Scholar 

Download references

Authors Contributions

M. Khazaee: Methodology, investigation, writing – original draft, writing - review & editing. M. Sadedel: Supervision, project administration, conceptualization. A. Davarpanah: Formal analysis, visualization, software.

Funding

The authors proclaim that they did not receive any funding for this Study.

Author information

Authors and Affiliations

Authors

Contributions

Owing to the fact that the data supporting the findings of this article is going to be utilized for future studies, participants of this research do not agree for their data to be shared publicly.

Corresponding author

Correspondence to Majid Sadedel.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazaee, M., Sadedel, M. & Davarpanah, A. Behavior-Based Navigation of an Autonomous Hexapod Robot Using a Hybrid Automaton. J Intell Robot Syst 102, 29 (2021). https://doi.org/10.1007/s10846-021-01388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01388-0

Keywords

Navigation