Skip to main content
Log in

Bi-Level linear programming of intuitionistic fuzzy

  • Fuzzy systems and their mathematics
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this research paper, we will solve problems of Bi-level linear fractional programming (BL-LFP) by proposing an interactive approach. Based on the imposition of the relationship DM. to obtained adequate solution, DMs will updating the minimal adequate level at upper level permanently, and that is through. Firstly, the decision makers uncertainty is described by introducing the membership function and non-membership function. Secondly, the opting of minimum adequate degree, leads to obtain the adequate solution, with the overall adequate balance considerations among two levels. For more, this paper gives an algorithm of the proposed approach. At the end, we give a numerical example to explain the feasibility of that approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Angelov PP (1997) Optimization in an intuitionistic Fuzzy environment [J]. Fuzzy Sets Syst 86(3):299–306

    Article  MathSciNet  MATH  Google Scholar 

  • Atanassov KT (1986) Intuitionistic Fuzzy Sets [J]. Fuzzy Sets Syst 20(1):87–96

    Article  MathSciNet  MATH  Google Scholar 

  • Bard JF (1998) Practical Bilevel Optimization: Algorithms and Applications [M]. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Candler W, Norton R (1977) Multi-level Programming and development policy [r]. Technical Report 20. Washington D.C: World Bank Development Research Center

  • Chakraborty M, Gapta S (2002) Fuzzy Mathematical Programming for multi-objective Linear fractional programming problem. Fuzzy Sets Syst 125(3):335–342

    Article  MathSciNet  MATH  Google Scholar 

  • Charnes A, Cooper W (1962) Programming with linear fractional Functions. Naval Res Log Qual 9(3–4):181–186

    Article  MATH  Google Scholar 

  • Chen SM, Tan JM (1994) Handling multicriteria Fuzzy decision-making problems based on vague set theory. [J] Fuzzy Sets Syst 67(2), 163–172

  • Dempe S (2002) Foundations of Bilevel Programming [M]. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Dempe S (2003) Annotated bibliography on bilevel program and mathematical programs with equilibrium constraints [J]. Optimization 52(3):333–359

    Article  MathSciNet  MATH  Google Scholar 

  • Ejegwa PA, Akowe SO, Otene PM, Ikyule JM (2014) An overview on intuitionistic fuzzy sets. Int J Sci Technol Res 3(3):142–145

    Google Scholar 

  • Emam OE (2013) Interactive approach to bi-level integer multi-objective fractional programming problems. Appl Math Comput 223:17–24

    MathSciNet  MATH  Google Scholar 

  • Huang C, Fnang D, Wan Z (2015) An interactive intuitionistic fuzzy method for multilevel linear programming problems. Wuhan Univ J Nat Sci 20(2):113–118

    Article  MathSciNet  MATH  Google Scholar 

  • Li DF (2005) Multiattribute decision making models and methods using intuitionistic fuzzy sets [J]. J Comput Syst Sci 70(1):73–85

    Article  MathSciNet  MATH  Google Scholar 

  • Liu HW, Wang GJ (2007) Multi-Criteria decision-making methods based on intuitionistic fuzzy sets [J]. European J Oper Res 179(1):220–233

    Article  MATH  Google Scholar 

  • Mahapatra GS (2010) Intuitionistic fuzzy multi-objective mathematical programming on reliability optimization model [J]. Int J Fuzzy Syst 12(3):259–266

    MathSciNet  Google Scholar 

  • Maiti SK, Roy SK (2019) Bi-level programming for Stackelberg game with intuitionistic fuzzy number: a ranking approach. J Oper Res Soc China, 1-19

  • Pal B, Moitra B, Maulik U (2003) A goal programming procedure for fuzzy and multiobjective linear fractional programming problem. Fuzzy Sets Syst 139(2):395–405

    Article  MathSciNet  MATH  Google Scholar 

  • Raouf OA, Ali Hassan BM, Hezam IM (2017) Sperm motility algorithm for solving fractional programming problems under uncertainty. Int J Adv Comput Sci Appl 8(5), 40–48

  • Sakawa M, Nishizaki I (2009) Cooperative and noncooperation multi-level programming [M]. Springer-Verlag, New York

    Google Scholar 

  • Sakawa M, Nishizaki I (2012) Interactive Fuzzy Programming for multi-level programming problems: a review [J]. Int J Multicviteria Dec Mak 3(2):241–266

    Google Scholar 

  • Sakawa M, Nishizaki I, Uemura Y (1998) Interactive Fuzzy Programming for multilevel linear programming problems [J]. Comput Math Appl 36(2):71–86

    Article  MathSciNet  MATH  Google Scholar 

  • Sapan KD, Edalatpanah SA (2020) New insight on solving fuzzy linear fractional programming in material aspects. Fuzzy Optim Modell 1:1–7

    Google Scholar 

  • Subject KS, Shiv PY (2016) Fuzzy programming approach for solving intuitionistic fuzzy linear fractional programming problem. Int J Fuzzy Syst 18(2):263–269

    Article  MathSciNet  Google Scholar 

  • Sumit Kumar M, Sankar Kumar R (2020) Analysing interval and multi-choice bi-level programming for Stackelberg game using intuitionistic fuzzy programming. Int J Math Oper Res 16(3):354–375

    Article  MathSciNet  MATH  Google Scholar 

  • Vicente L, Calamai PH (1994) Bilevel and Multilevel Programming: a bibliography review [J]. J Global Optim 5(3):291–306

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng Y, Liu J, Wan Z (2014) Interactive fuzzy decision making method for solving bilevel programming problem [J]. Appl Math Model 38(13):3136–3141

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Funding

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast−track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazek A. Alessa.

Ethics declarations

Conflict of interest

Disclosure of potential conflicts of interest: No conflict of interest.

Research involving human participants and/or animals.

Ethical approval

This article does not contain any studies with human participants or animals.performed by any of the authors.

Informed consent

No need it.

The paper is novelty.

Appendix

Here we will consider an example clarifies Tri-level linear fractional programming problem (TL-LFPP) as:

$$ \mathop {\min }\limits_{{w_{1} ,w_{2} ,w _{3} }} X_{1} \left( w \right) = { }\frac{{7w_{1} + 6w_{2} + 8w_{3} }}{{9w_{1} + 10w_{2} + 8w_{3} + 2}} $$
$$ \mathop {\min }\limits_{{w_{2} ,w_{3} }} X_{2} \left( w \right) = { }\frac{{8w_{1} + 7w_{2} + 9w_{3} }}{{8w_{1} + 9w_{2} + 6w_{3} + 1.5}} $$
$$ \mathop {\min }\limits_{{w_{3} }} X_{3} \left( w \right) = { }\frac{{9w_{1} + 8w_{2} + 10w_{3} }}{{7w_{1} + 8w_{2} + 4w_{3} + 1}} $$
$$ \begin{gathered} {\text{s.t}}{.}\;\;w \, = \left( {w_{1} , \, w_{2} , \, w_{3} } \right)\in V = \, \{ \left( {w_{1} , \, w_{2} , \, w_{3} } \right) \, | \, 3w_{1} + \, 2w_{2} + \, 4w_{3} < \, 25, \hfill \\ \;\;\;\;\;\;\;4w_{1} + 3w_{2} + 5w_{3} \le \, 28 \, , \, 5w_{1} + \, 4w_{2} + \, 6w_{3} \le \, 30, \hfill \\ \;\;\;\;\;\;\;2w_{1} + \, 1.5w_{2} + \, 3w_{3} \le \, 24 \, , \, 6w_{1} + \, 4.5w_{2} + \, 7w_{3} \le \, 32, \hfill \\ \;\;\;\;\;\;\;4w_{1} + \, 2w_{2} + \, 2w_{3} \le \, 18 \, , \, 5w_{1} + \, 3w_{2} + \, 3w_{3} \le \, 20, \hfill \\ \;\;\;\;\;\;\;6w_{1} + \, 4w_{2} + \, 4w_{3} \le \, 22 \, , \, 3w_{1} + \, 1.5w_{2} + \, 1.5w_{3} \le \, 16, \hfill \\ \;\;\;\;\;\;\;7w_{1} + \, 4.5w_{2} + \, 4.5x_{3} \le \, 24 \, ,w_{1} + w_{2} + w_{3} \ge \, 0\} \hfill \\ \end{gathered} $$
(17)

By using a transformation method of Charnos and Cooper (Charnes and Cooper 1962), which was illustrated in detail in (Subject and Shiv 2016), to illustrate that TL-LFPP is equivalent to the following TL-LPP.

$$ \mathop {\min }\limits_{{c_{1} ,c_{2} ,c_{3} }} X_{1} \left( {c , \theta } \right) = 7c_{1} + 6c_{2} + 8c_{3} , $$
$$ \mathop {\min }\limits_{{{\text{c}}_{2} ,{\text{c}}_{3} }} X_{2} \left( {c , \theta } \right) = 8y_{1} + 7y_{2} + 9y_{3} , $$
$$ \mathop {\min }\limits_{{c_{3} }} {\text{X}}_{3} \left( {c , \theta } \right) = 9c_{1} + 8c_{2} + 10c_{3} , $$
$$ \begin{gathered} {\mathbf{s}}.{\mathbf{t}}. \left( {c \, , \, \tau } \right) \, = \, (c_{1} , \, c_{2} , \, c_{3} ,\theta ) \in G = \, \{ (c_{1} , \, c_{2} , \, c_{3} ,\theta )| \hfill \\ \;\;\;\;\;\;9c_{1} + \, 10c_{2} + \, 8c_{3} + \, 2 \theta \le 1 \, , \, 8c_{1} + \, 9c_{2} + \, 6c_{3} + \, 1.5\theta \le \, 1, \hfill \\ \;\;\;\;\;\;7c_{1} + \, 8c_{2} + \, 4c_{3} + \theta \le 1 \, , \, 3c_{1} + \, 2c_{2} + \, 4c_{3} {-}25\theta \le \, 0, \hfill \\ \;\;\;\;\;\;4c_{1} + \, 3c_{2} + \, 5c_{3} {-} \, 28\theta \le 0 \, , \, 5c_{1} + \, 4c_{2} + \, 6c_{3} {-} \, 30 \theta \le \, 0, \hfill \\ \;\;\;\;\;\;2c_{1} + \, 1.5c_{2} + \, 3c_{3} {-} \, 24\theta \le 0 \, , \, 6c_{1} + \, 4.5c_{2} + \, 7c_{3} {-} \, 32\theta \le \, 0, \hfill \\ \;\;\;\;\;\;4c_{1} + \, 2c_{2} + \, 2c_{3} {-} \, 18\theta \le 0 \, , \, 5c_{1} + \, 3c_{2} + \, 3c_{3} {-} \, 20 \theta \le \, 0, \hfill \\ \;\;\;\;\;\;6c_{1} + \, 4c_{2} + \, 4c_{3} {-} \, 22 \theta \le 0 \, , \, 3c_{1} + \, 1.5c_{2} + \, 1.5c_{3} {-}16\theta \le \, 0, \hfill \\ \;\;\;\;\;\;7c_{1} + \, 4.5c_{2} + \, 4.5c_{3} {-} \, 24\theta \le 0 \, ,c_{1} ,c_{2} ,c_{3} \ge \, 0 \, \theta , > 0\} \hfill \\ \end{gathered} $$
(18)

We choose ν1 = 10, ν2 = 6, ν3 = 2, γ1 = 0.95, γ2 = 0.85, [σ1L, σ1U] = [σ2L, σ2U] = [0.75, 0.9]. The solution of problem (15) is.

c = (8.581, 6.1466, 9.96877), θ = 1.6, ψ = 0.58112.

X1 = −516.22, X2 = –451.7, X3 = –371.435,

a1(X1) = 0.804 < γ1 = 0.95. a2(X2) = 0.595 < γ2 = 0.85.

a3(X3) = 0.581 < σ1 = 0.7412. σ2 = 0.9755.

Both of DM1 and DM2 aren’t satisfied with the above solution, so if DM2 changes γ2 = 0.85 to γ'2 = 0.65. So the corresponding problem of (16) is formulated as:

$$ \left\{ {\begin{array}{*{20}c} {\mathop {\max }\limits_{{\left( {c,\theta } \right),\psi }} \psi } \\ {{\mathbf{s}}.{\mathbf{t}} (c,\theta ) \, = \, (c_{1} ,c_{2} ,c_{3} ,\theta ) \in H,} \\ {(X_{1} (c \, ,\theta )) \, \ge \psi ,} \\ {a_{2} (X_{2} (c \, ,\theta )) \, \ge \, 0.65 \, ,} \\ {a_{3} (X_{3} (c{ ,}\theta )) \, \ge \, \psi \, ,} \\ {\psi \in \left[ {0,1} \right],} \\ {\lambda_{n} (X_{n} (c{ ,,}\theta )) \, \ge \, 0 , n = \, 1, \, 2, \, 3} \\ {\xi_{n} (X_{n} (c \, ,\theta )) \ge \lambda_{n} (X_{n} (c{ ,}\theta )) , n = \, 1, \, 2, \, 3} \\ {\xi_{n} (X_{n} (c \, ,\theta )) \ge \lambda_{n} (X_{n} (c{ ,}\theta )) \le 1, n = \, 1, \, 2, \, 33} \\ \end{array} } \right. $$
(19)

The solution of problem (19) is c = (8.791, 7.257, 8.916), θ = 2.1, ψ = 0.558775,

X1= −519.09, X2= −453.12, X3 = −371.4, a1(X1) = 0.865072 < γ1= 0.95,

a2(X2) = 0.65, a3(X3) = 0.558775, σ1 = 0.7514, σ2 = 0.8596.

The termination condition (7) isn't satisfied the value of a1(X1), if DM1 changes γ2 = 0.95 to γ'1 = 0.91 then solves the problem (20);

$$ \left\{ {\begin{array}{*{20}c} {\mathop {\max }\limits_{{\left( {c,\theta } \right),\psi }} \psi } \\ {{\mathbf{s}}.{\mathbf{t}} (c \, ,\theta ) \, = \, (c_{1} ,c_{2} ,c_{3} ,\theta ) \in H,} \\ {a_{1} (X_{1} (c \, ,\theta )) \, \ge \, 0.91 \, ,} \\ {a_{2} (X_{2} (c \, ,\theta )) \, \ge \, 0.65 \, ,} \\ {a_{3} (X_{3} (c \, ,\theta )) \, \ge y ,} \\ {\psi \in \left[ {0, \, 1} \right] \, ,} \\ {l\lambda_{n} (X_{n} (c \, ,\theta )) \, \ge \, 0 , n = \, 1, \, 2, \, 3} \\ {\xi_{n} (X_{n} (c \, ,\theta )) \ge \lambda_{n} (X_{n} (c \, ,\theta )) , n = \, 1, \, 2, \, 3} \\ {\xi_{n} (X_{n} (c \, ,\theta )) + \lambda_{n} (X_{n} (c \, ,\theta )) \le 1 \, , n = \, 1, \, 2, \, 3} \\ \end{array} } \right. $$
(20)

The solution of problem (14) is.

c = (8.873, 9.246, 7.917), θ = 1.513, ψ = 0.537895.

X1 = −518.12, X2 = −450.36, X3 = −369.57,

a1(X1) = 0.91, a2(X2) = 0.701, a3(X3) = 0.5379,

σ1 = 0.778453, σ2 = 0.767755.

By now, a1(X1) = 0.91 = γ'1, a2(X2) = 0.701 > 0.65 = γ'2,

Moreover σ1 = 0.778453, σ2 = 0.767755 are all in [0.75, 0.9]. This is meaning that, all the proposed algorithm's termination conditions are satisfied, the DMs find the adequate solution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alessa, N.A. Bi-Level linear programming of intuitionistic fuzzy. Soft Comput 25, 8635–8641 (2021). https://doi.org/10.1007/s00500-021-05791-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-05791-5

Keywords

Mathemetical Subject Classification

Navigation